Skip to main content
Log in

Electronic structure and magnetic properties of (γ-Fe2O3/MgO)N multilayers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the electronic structure, chemical composition, and magnetic properties of multilayer ultrathin films of epitaxial maghemite (γ-Fe2O3/MgO)N were investigated. The multilayer structures of the (γ-Fe2O3/MgO)N ultrathin films were grown by molecular beam epitaxy (MBE) under ultrahigh vacuum on magnesium oxide substrates with different numbers of layers (where the number of layers, N = 2, 4, and 6). X-ray photoemission measurement (XPS) showed that the multilayer oxide films possessed only a single phase of maghemite γ-Fe2O3 with full stoichiometry. The magnetic moment of all of the multilayer samples showed ferromagnetic behavior, with magnetizations close to the bulk value of γ-Fe2O3, which has not been previously observed or considered. Moreover, the magnetization increased as the number of layers increased. These findings show that the multilayer ultrathin γ-Fe2O3film possesses good magnetic properties that are close to those of the bulk of γ-Fe2O3, and will thus be useful in developing spintronic devices with good performance and other technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.A. Borchers, R.W. Erwin, S.D. Berry, D.M. Lind, J.F. Ankner, E. Lochner, K.A. Shaw, D. Hilton, Phys. Rev. B 51, 8276 (1995)

    Article  ADS  Google Scholar 

  2. J.A. Borchers, M.J. Carey, R.W. Erwin, C.F. Majkrzak, A.E. Berkowitz, Phys. Rev. Lett. 70, 1878 (1993)

    Article  ADS  Google Scholar 

  3. P.J. Van der Zaag, A.R. Ball, L.F. Feiner, R.M. Wolf, P.A.A. Van Der Heijden, J. Appl. Phys. 79, 5103 (1996)

    Article  ADS  Google Scholar 

  4. P.A.A. Van der Heijden, P.J.H. Bloemen, J.M. Metselaar, R.M. Wolf, J.M. Gaines, J.T.W.M. Van Eemeren, P.J. Van der Zaag, W.J.M. De Jonge, Phys. Rev. B 55, 11569 (1997)

    Article  ADS  Google Scholar 

  5. M.A. James, F.C. Voogt, L. Niesen, O.C. Rogojanu, T. Hibma, Surf. Sci. 402, 332 (1998)

    Article  ADS  Google Scholar 

  6. G.J. Strijkers, J.T. Kohlhepp, P.A.A. Van der Heijden, H.J.M. Swagten, W.J. De Jonge, J.M. Gaines, J. Appl. Phys. 85, 5294 (1999)

    Article  ADS  Google Scholar 

  7. C.L. Chang, G. Chern, Y.R. Chean, C.L. Chen, Appl. Surf. Sci. 161, 448 (2000)

    Article  ADS  Google Scholar 

  8. P.A.A. Van der Heijden, P.J.H. Bloemen, J.M. Gaines, J.T.W.M. Van Eenneren, R.M. Wolf, P.J. Van der Zaag, W.J.M. De Jonge, J. Magn. Magn. Mater. 159, L293 (1996)

    Article  Google Scholar 

  9. R.J.M. Van De Veerdonk, M.A.M. Gijs, P.A.A. Van Der Heijden, R.M. Wolf, W.J.M. De Jonge, MRS Online Proc. Libr. 401, 485 (1995)

    Article  Google Scholar 

  10. P.A.A. Van der Heijden, M.G. Van Opstal, C.H.W. Swüste, P.H.J. Bloemen, J.M. Gaines, W.J.M. De Jonge, J. Magn. Magn. Mater. 182, 71 (1998)

    Article  ADS  Google Scholar 

  11. Y. Ijiri, J. Phys. Condens. Matter 14(37), R947 (2002)

    Article  ADS  Google Scholar 

  12. J.K. Vassiliou, V. Mehrotra, M.W. Russell, E.P. Giannelis, R.D. McMichael, R.D. Shull, R.F. Ziolo, J. Appl. Phys. 73, 5109 (1993)

    Article  ADS  Google Scholar 

  13. G. Chern, Y.D. Yao, Y.Y. Chen, S.C. Lai, Y.R. Chean, IEEE Trans. Magn. 33, 3700 (1997)

    Article  ADS  Google Scholar 

  14. S. Alraddadi, W. Hines, B. Sinkovic, IEEE Trans. Magn. 55(3), 1–5 (2019)

    Article  Google Scholar 

  15. O. Mauit, K. Fleischer, C.Ó. Coileáin, B. Bulfin, D.S. Fox, C.M. Smith, D. Mullarkey, G. Sugurbekova, H. Zhang, I.V. Shvets, Phys. Rev. B 95(12), 125128 (2017)

    Article  ADS  Google Scholar 

  16. N.E. Domracheva, V.E. Vorobeva, M.S. Gruzdev, A.V. Pyataev, J. Nanopart. Res. 17, 83 (2015)

    Article  ADS  Google Scholar 

  17. R.F. Ziolo, E.P. Giannelis, B.A. Weinstein, M.P. O’Horo, B.N. Ganguly, V. Mehrotra, M.W. Russell, D.R. Huffman, Science 257, 219 (1992)

    Article  ADS  Google Scholar 

  18. M. Mirza, K. Ali, A. Sarfraz, A. Ali, A. ul Haq, Mater. Chem. Phys. 164, 183 (2015)

    Article  Google Scholar 

  19. S. Apte, S. Naik, R. Sonawane, B. Kale, J. Baeg, J. Am. Ceram. Soc. 90, 412 (2007)

    Article  Google Scholar 

  20. A.C. Garade, M. Bharadwaj, S.V. Bhagwat, A.A. Athawale, C. Rode, Catal. Commun. 10, 485 (2009)

    Article  Google Scholar 

  21. S.-W. Cao, Y.-J. Zhu, M.-Y. Ma, L. Li, L. Zhang, J. Phys. Chem. C 112, 1851 (2008)

    Article  Google Scholar 

  22. H. Khurshid, S. Kim, M. Bonder, L. Colak, B. Ali, S. Shah, K.L. Kiick, G. Hadjipanayis, J. Appl. Phys. 105, 07B308 (2009)

    Article  Google Scholar 

  23. M. Liong, J. Lu, M. Kovochich, T. Xia, S.G. Ruehm, A.E. Nel, F. Tamanoi, J.I. Zink, ACS Nano 2, 889 (2008)

    Article  Google Scholar 

  24. Y.N. Wu, M. Zhou, S. Li, Z. Li, J. Li, B. Wu, G. Li, F. Li, X. Guan, Small 10, 2927 (2014)

    Article  Google Scholar 

  25. Z. Jing, Y. Wang, S. Wu, Sens. Actuators B Chem. 113, 177 (2006)

    Article  Google Scholar 

  26. Z. Jing, Mater. Lett. 60, 3315 (2006)

    Article  Google Scholar 

  27. P.M. Rao, X. Zheng, Nano Lett. 11, 2390 (2011)

    Article  ADS  Google Scholar 

  28. Q. Han, Z. Liu, Y. Xu, Z. Chen, T. Wang, H. Zhang, J. Phys. Chem. C 111, 5034 (2007)

    Article  Google Scholar 

  29. H. Yanagihara, M. Hasegawa, E. Kita, Y. Wakabayashi, H. Sawa, K. Siratori, J. Phys. Soc. Jpn. 75, 054708 (2006)

    Article  ADS  Google Scholar 

  30. T. Nozaki, T. Ohkubo, Y. Shiota, H. Kubota, A. Fukushima, K. Hono, Y. Suzuki, S. Yuasa, Appl. Phys. Express 6, 113004 (2013)

    Article  ADS  Google Scholar 

  31. S. Alraddadi, W. Hines, T. Yilmaz, G.D. Gu, B. Sinkovic, J. Phys. Condens. Matter 28, 115402 (2016)

    Article  ADS  Google Scholar 

  32. L. Baldrati, C. Schneider, T. Niizeki, R. Ramos, J. Cramer, A. Ross, E. Saitoh, M. Kläui, Phys. Rev. B 98, 014409 (2018)

    Article  ADS  Google Scholar 

  33. C.S. Kuivila, J.B. Butt, P.C. Stair, Appl. Surf. Sci. 32, 99 (1988)

    Article  ADS  Google Scholar 

  34. V. Stambouli, C. Palacio, H.J. Mathieu, D. Landolt, Appl. Surf. Sci. 70, 240 (1993)

    Article  ADS  Google Scholar 

  35. P. Graat, M.A. Somers, Surf. Interface Anal. 26, 773 (1998)

    Article  Google Scholar 

  36. J.S. Corneille, J.W. He, D.W. Goodman, Surf. Sci. 338, 211 (1995)

    Article  ADS  Google Scholar 

  37. Y. Gao, Y.J. Kim, S.A. Chambers, G. Bai, J. Vaccum Sci. Technol. A 15, 332 (1997)

    Article  ADS  Google Scholar 

  38. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254(8), 2441 (2008)

    Article  ADS  Google Scholar 

  39. T. Schedel-Niedrig, W. Weiss, R. Schlögl, Phys. Rev. B 52, 17449 (1985)

    Article  ADS  Google Scholar 

  40. T. Fujii, F.M.F. De Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, Phys. Rev. B 59, 3195 (1999)

    Article  ADS  Google Scholar 

  41. F.J. Morin, Phys. Rev. B 78, 819 (1950)

    Article  ADS  Google Scholar 

  42. L. Suber, A.G. Santiago, D. Fiorani, P. Imperatori, A.M. Testa, M. Angiolini, J.L. Dormann, Appl. Organomet. Chem. 12, 347 (1998)

    Article  Google Scholar 

  43. E.J.W. Verwey, Nature 144, 327 (1939)

    Article  ADS  Google Scholar 

  44. D.D. Dung, W. Feng, D. Van Thiet, Y. Kim, S. Cho, Mater. Lett. 161, 343 (2015)

    Article  Google Scholar 

  45. D.T. Margulies, F.T. Parker, F.E. Spada, R.S. Goldman, J. Li, R. Sinclair, A.E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the technical support received from the Center of Nanotechnology at KAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoroog Alraddadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alraddadi, S. Electronic structure and magnetic properties of (γ-Fe2O3/MgO)N multilayers. Appl. Phys. A 127, 53 (2021). https://doi.org/10.1007/s00339-020-04204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04204-y

Keywords

Navigation