Skip to main content
Log in

Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe2O3 nanoparticles formed in dendrimer

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We are presenting the investigation of the optical, magnetic, and photoinduced superparamagnetic properties of single-domain γ-Fe2O3 nanoparticles (NPs) with diameters of about 2.5 nm formed in second-generation poly(propylene imine) dendrimer. The optical absorption studies indicated direct allowed transition with the band gap (4.5 eV), which is blue shift with respect to the value of the bulk material. Low-temperature blocking of the NPs magnetic moments at 18 K is determined by SQUID measurements. The influence of pulsed laser irradiation on the superparamagnetic properties of γ-Fe2O3 NPs was studied by EPR spectroscopy. It has been shown that irradiation of the sample held in vacuo and cooled in zero magnetic field to 6.9 K leads to the appearance of a new EPR signal, which decays immediately after the irradiation is stopped. The appearance and disappearance of this new signal can be repeated many times at 6.9 K when we turn on/turn off the laser. We suppose that the generation of conduction band electrons by irradiation into the band gap of the γ-Fe2O3 changes the superparamagnetic properties of NPs.

Graphical Abstract

Features of the behavior of single-domain γ-Fe2O3 nanoparticles formed in dendrimer were found by UV-Vis and EPR spectroscopy: “blue” shift in optical absorption, a significant increase in the band gap width and variation of superparamagnetic properties under light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30:120–30129. doi:10.1063/1.2185850

    Article  Google Scholar 

  • Berger R, Kliava J, Bissey J-C, Baïetto V (1998) Superparamagnetic resonance of annealed iron-containing borate glass. J Phys 10:8559–8572

    Google Scholar 

  • Berger R, Bissey J-C, Kliava J, Daubric H, Estournes C (2001) Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles. J Magn Magn Mater 234:535–544. doi:10.1016/S0304-8853(01)00347-X

    Article  Google Scholar 

  • Bhattacharyya D, Chaudhuri S, Pal AK (1992) Bandgap and optical transitions in thin films from reflectance measurements. Vacuum 43:313–316

    Article  Google Scholar 

  • Chakrabarti S, Ganguli D, Chaudhuri S (2004) Optical properties of γ-Fe2O3 nanoparticles dispersed on sol–gel silica spheres. Phys E 24:333–342. doi:10.1016/j.physe.2004.06.036

    Article  Google Scholar 

  • Chirita M, Grozescu I (2009) Fe2O3—nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem Bull “Politehnica” Univ (Timisoara) 54:1

    Google Scholar 

  • Chudnovsky EM, Gunther L (1988) Quantum tunneling of magnetization in small ferromagnetic particles. Phys Rev Lett 60:661–664

    Article  Google Scholar 

  • Domracheva NE, Pyataev AV, Manapov RA, Gruzdev MS (2011) Magnetic resonance and Mössbauer studies of superparamagnetic γ-Fe2O3 nanoparticles encapsulated into liquid-crystalline Poly(propylene imine) dendrimers. Chem Phys Chem 12:3009–3019. doi:10.1002/cphc.201100363

    Google Scholar 

  • Dronskowski R (2001) The little maghemite story: a classic functional material. Adv Funct Mater 11:27–29

    Article  Google Scholar 

  • Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Ann Rev Mater 30:475–521

    Article  Google Scholar 

  • Ekimov AI, Onushchenko AA (1981) Quantum size effect in semiconductor three-dimensional microcrystals. Pis’ma Zh Eksp Teor Fiz 34:363–366

    Google Scholar 

  • Franckevicius M, Tamuliene J, Babonas J, Simkiene I, Rasteniene L, Kulbickas A, Irzikevicius A, Vaisnoras R (2011) UV spectral features of poly (propylene imine) dendrimers. Lith J Phys 51:207–211

    Article  Google Scholar 

  • Jacobs IS, Bean CP (1963) In: Rado GT, Shul H (eds) Magnetism III, vol Chap. 6. Academic, New York

    Google Scholar 

  • Kharlamova MV, Sapoletova NA, Eliseev AA, Suzdalev IP, Maksimov YUV, Lukashin AV, Tret’yakov YUD (2007) Optical properties of nanostructured γ iron oxide. Dokl Chem 415:176–179

    Article  Google Scholar 

  • Kharlamova MV, Sapoletova NA, Eliseev AA, Lukashin AV (2008) Optical properties of γ-ferric oxide nanoparticles in a mesoporous silica matrix. Tech Phys Lett 34:288–291

    Article  Google Scholar 

  • Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. doi:10.1039/b800489g

    Article  Google Scholar 

  • Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zuerger W (1987) Dynamics of the dissipative two-state system. Rev Mod Phys 59:1–85

    Article  Google Scholar 

  • Macdonald IR, Howe RF, Saremi-Yarahmadi S, Wijayantha KGU (2010) Photoinduced superparamagnetism in nanostructured α-Fe2O3. J Phys Chem Lett 1:2488. doi:10.1021/jz100650w

    Article  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338

    Article  Google Scholar 

  • Neel L (1948) Proprietes magnetiques des ferrites: ferrimagnetisme et antiferromagnetisme. Ann Phys 3:137–198

    Google Scholar 

  • Pankov JI (1971) Optical processes in semiconductors. Printice-Hall, New Jersey, p 34

    Google Scholar 

  • Parker FT, Foster MW, Margulies DT, Berkowitz AE (1993) Spin canting, surface magnetization, and finite-size effects in γ-Fe2O3 particles. Phys Rev 47:7885–7891

    Article  Google Scholar 

  • Raikher YuL, Stepanov VI (1994) Ferromagnetic resonance in a suspension of single-domain particles. Phys Rev B 50:6250. doi:10.1103/PhysRevB.50.6250

    Article  Google Scholar 

  • Waychunas GA (1991) Crystal chemistry of oxides and oxyhydroxides. Rev Miner Geochem 25:11–68

    Google Scholar 

  • Wijayantha KGU, Auty DH (2005) Encyclopaedia of materials: science and technology updates. Elsevier, Oxford, p 15

    Google Scholar 

  • Ziolo RF, Giannelis EP, Weinstein BA, O’Horo MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline γ-Fe2O3: a new optically transparent magnetic material. Science 257:219–223

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yu. N. Shvachko and D. V. Starichenko for magnetic measurements. We gratefully acknowledge the financial support for this work by RAS Presidium program No. 24 and in part by the RFBR, project No. 11-03-01028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia E. Domracheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domracheva, N.E., Vorobeva, V.E., Gruzdev, M.S. et al. Blue shift in optical absorption, magnetism and light-induced superparamagnetism in γ-Fe2O3 nanoparticles formed in dendrimer. J Nanopart Res 17, 83 (2015). https://doi.org/10.1007/s11051-015-2890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2890-z

Keywords

Navigation