Skip to main content
Log in

Thermoelectric properties of Ni/Ge-multilayer-laminated silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the thermoelectric properties of Ni/Ge-multilayer-laminated silicon thermoelectric devices based on the number of Ni/Ge layers from single layer to 50 layers. For the Ni/Ge-multilayer lamination, Ni and Ge thin layers are alternately deposited on a bulk silicon substrate using RF sputtering at room temperature. The Seebeck coefficient improves and the thermal conductivity decreases compared with the bulk silicon thermoelectric device as the number of Ni/Ge layers increases. A seven Ni/Ge-multilayer-laminated thermoelectric device indicates a Seebeck coefficient of  – 260 μV/K and a thermal conductivity of 56 W/m∙K at 510 K without electrical conductivity deterioration; subsequently, a thermoelectric power factor of 5.6 mW/m∙K2 and zT of 0.05 are achieved at 510 K. The improvement in the Seebeck coefficient in the multilayer devices is attributed to the electron filtering effect due to the Schottky barriers at the Ni/Ge interfaces. It is speculated that the acoustic phonon impedance mismatch at the Si(Al)/Ni interface reduces/saturates the thermal conductivity. The thermoelectric results indicate the potential of using a Ni/Ge-multilayer structure for silicon-based thermoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. He, W. Heyn, F. Thiel, N. Férez, C. Damm, D. Pohl, B. Rellinghaus, C. Reimann, M. Beier, J. Friedrich, H. Zhu, Z. Ren, K. Nielsch, G. Schierning, J. Materiomics 5, 15 (2019)

    Article  Google Scholar 

  2. Z. Viskadourakis, M.L. Paramês, O. Conde, M. Zervos, J. Giapintzakis, Appl. Phys. Lett. 101, 033505 (2012)

    Article  ADS  Google Scholar 

  3. W. Choi, D. Jun, S. Kim, M. Shin, M. Jang, Energy 82, 180 (2015)

    Article  Google Scholar 

  4. N. Uchida, T. Tada, Y. Ohishi, Y. Miyazaki, K. Kurosaki, S. Yamanaka, J. Appl. Phys. 114, 134311 (2013)

    Article  ADS  Google Scholar 

  5. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  6. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III., J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  7. T. Claudio, N. Stein, D.G. Stroppa, B. Klobes, M.M. Koza, P. Kudejova, N. Petermann, H. Wiggers, G. Schierning, R.P. Hermann, Phys. Chem. Chem. Phys. 16, 25701 (2014)

    Article  Google Scholar 

  8. T. Zhu, G. Yu, J. Xu, H. Wu, C. Fu, X. Liu, J. He, X. Zhao, Adv. Electron. Mater. 2, 1600171 (2016)

    Article  Google Scholar 

  9. Z. Li, S. Tan, E. Bozorg-Grayeli, T. Kodama, M. Asheghi, G. Delgado, M. Panzer, A. Pokrovsky, D. Wack, K.E. Goodson, Nano Lett. 12, 3121 (2012)

    Article  ADS  Google Scholar 

  10. E. Dechaumphai, D. Lu, J.J. Kan, J. Moon, E.E. Fullerton, Z. Liu, R. Chen, Nano Lett. 14, 2448 (2014)

    Article  ADS  Google Scholar 

  11. F.J. Ye, Z.G. Zeng, C. Lin, Z.Y. Hu, J. Mater. Sci. 50, 833 (2015)

    Article  ADS  Google Scholar 

  12. J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, A.C. Gossard, Phys. Rev. B 74, 205335 (2006)

    Article  ADS  Google Scholar 

  13. S. Wang, N. Mingo, Phys. Rev. B 79, 115316 (2009)

    Article  ADS  Google Scholar 

  14. R. Kim, M.S. Lundstrom, J. Appl. Phys. 111, 024508 (2012)

    Article  ADS  Google Scholar 

  15. S. Pettersson, G.D. Mahan, Phys. Rev. B 42, 7386 (1990)

    Article  ADS  Google Scholar 

  16. S.T. Huxtable, A.R. Abramson, C.-L. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J.E. Bowers, A. Shakouri, E.T. Croke, Appl. Phys. Lett. 80, 1737 (2002)

    Article  ADS  Google Scholar 

  17. J.H. Oh, M.-G. Jang, M. Shin, S.-H. Lee, Appl. Phys. Lett. 100, 113110 (2012)

    Article  ADS  Google Scholar 

  18. A. Stranz, J. Kähler, A. Waag, E. Peiner, J. Electron. Mater. 42, 2381 (2013)

    Article  ADS  Google Scholar 

  19. K. Kim, K. Jung, S. Song, S. Mun, M. Jang, K. Park, J. Nanosci. Nanotechnol. 17, 8081 (2017)

    Article  Google Scholar 

  20. H. Ohta, T. Mizuno, S. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, H. Hosono, Adv. Mater. 24, 740 (2012)

    Article  Google Scholar 

  21. M. Li, Y. Wang, J. Zhou, J. Ren, B. Li, Eur. Phys. J. B 88, 149 (2015)

    Article  ADS  Google Scholar 

  22. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Appl. Phys. Lett. 93, 193121 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the 2020 sabbatical year research grant of the University of Seoul (awarded to Kyoungwan Park).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungwan Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Mun, S., Jang, M. et al. Thermoelectric properties of Ni/Ge-multilayer-laminated silicon. Appl. Phys. A 127, 50 (2021). https://doi.org/10.1007/s00339-020-04200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04200-2

Keywords

Navigation