Skip to main content
Log in

Electrical and optical characterization of Os-substituted rare-earth orthoferrite YbFeO3-γ powders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical properties of Os-doped YbFeO3 (YbFO) powders prepared by solid-state reaction have been studied by Impedance Spectrometer/Impedance Spectrometer. SEM, XPS and Raman spectroscopy were utilized for understanding chemical and structured analysis of the synthesized compounds. SEM images have revealed the void nature of the pellets. Furthermore, XPS studies have exhibited that Yb has 3 + valance state. It is also revealed that the oxygen vacancies concentration drops as the Os doping level raises by XPS analysis. The frequency dependency of loss-tan(δ) examination has demonstrated that the 5 mol% Os-substituted sample has the lowest loss-tan(δ) values at high frequency regions at 100 °C. It has been also realized that the 5 mol% Os-doped compound exhibits the highest resistivity among the samples. Raman spectroscopy examination has unveiled that the samples have similar space group. In addition, the optical band gap of the synthesized powders was also extracted via utilizing the Kubelka–Munk technique. It was realized that the band gap of YbFO slightly increases as the Os dopant ratio advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Ahmed, S.I. El-Dek, Optimizing the physical characterizations of orthoferrites to be used as pressure and gamma sensor. Mater. Lett. 60, 1437–1446 (2006)

    Article  Google Scholar 

  2. L. Li, X. Wang, Y. Lan, W. Gu, S. Zhang, Synthesis, photocatalytic and electrocatalytic activities of wormlike GdFeO3 nanoparticles by a glycol-assisted sol-gel process. Ind. Eng. Chem. Res. 52, 9130–9136 (2013)

    Article  Google Scholar 

  3. H.J. Zhao, Y. Yang, W. Ren, A.-J. Mao, X.M. Chen, L. Bellaiche, Creating multiferroics with large tunable electrical polarization from paraelectric rare-earth orthoferrites. J. Phys. Condens. Mater. 26, 472201 (2014)

    Article  Google Scholar 

  4. A. Stroppa, M. Marsman, G. Kresse, S. Picozy, The multiferroic phase of DyFeO3: an ab initio study. New J. Phys. 12, 093026 (2010)

    Article  ADS  Google Scholar 

  5. K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58, 321 (2009)

    Article  ADS  Google Scholar 

  6. J.-H. Lee, Y.K. Jeong, J.H. Park, M.-A. Oak, H.M. Jang, J.Y. Son, J.F. Scott, Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys. Rev. Lett. 107, 117201 (2011)

    Article  ADS  Google Scholar 

  7. Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloy. Compd. 583, 21–31 (2014)

    Article  Google Scholar 

  8. A.A. Bossak, I.E. Graboy, O.Y. Gorbenko, A.R. Kaul, M.S. Kartavtseva, V.L. Svetchnikov, H.W. Zandbergen, XRD and HREM studies of epitaxially stabilized hexagonal orthoferrites RFeO3 (R = Eu−Lu). Chem. Mater. 16, 1751–1755 (2004)

    Article  Google Scholar 

  9. M.S.V. Kumar, K. Kuribayashi, K. Kitazono, Effect of oxygen partial pressure on the formation of metastable phases from an undercooled YbFeO3 melt using an aerodynamic levitator. J. Am. Ceram. Soc. 92, 903–910 (2009)

    Article  Google Scholar 

  10. H. Iida, T. Koizumi, Y. Uesu, K. Kohn, N. Ikeda, S. Mori, R. Haumont, P.E. Janolin, J.M. Kiat, M. Fukunaga, Y. Noda, Ferroelectricity and ferrimagnetism of hexagonal YbFeO3 thin films. J. Phys. Soc. Jpn. 81, 024719 (2012)

    Article  ADS  Google Scholar 

  11. H. Iida, T. Koizumi, Y. Uesu, Physical properties of new multiferroic hexagonal YbFeO3 thin film. Phase Transit. 84(9–10), 747–752 (2011)

    Article  Google Scholar 

  12. Y.K. Jeong, J.-H. Lee, S.-J. Ahn, S.-W. Song, H.M. Jang, H. Choi, J.F. Scott, Structurally tailored hexagonal ferroelectricity and multiferroism in epitaxial YbFeO3 thin-film heterostructures. J. Am. Chem. Soc. 134, 1450–1453 (2012)

    Article  Google Scholar 

  13. O. Polat, M. Coskun, F.M. Coskun, B. Zengin Kurt, Z. Durmus, Y. Caglar, M. Caglar, A. Turut, Electrical characterization of Ir doped rare-earth orthoferrite YbFeO3. J. Alloy. Compd. 787, 1212–1224 (2019)

    Article  Google Scholar 

  14. M. Coskun, O. Polat, F.M. Coskun, B. Zengin Kurt, Z. Durmus, M. Caglar, A. Turut, The impact of Ir doping on the electrical properties of YbFe1-xIrxO3 perovskite-oxide compounds. J. Mater. Sci Mater. Electron. 31, 1731 (2020)

    Article  Google Scholar 

  15. O. Polat, M. Coskun, R. Kalousek, J. Zlamal, B. Zengin Kurt, Y. Caglar, M. Caglar, A. Turut, Frequency and temperature-dependent electric modulus spectroscopy of Os doped YbFeO3-ẟ structure. J. Phys. Condens. Matter 32, 065701 (2020)

    Article  ADS  Google Scholar 

  16. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019)

    Article  Google Scholar 

  17. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, An investigation of the optical properties of YbFe1-xIrxO3-ẟ (x=0, 0.01 and 0.10) orthoferrite films. Vacuum 173, 109124 (2020)

    Article  ADS  Google Scholar 

  18. O. Polat, M. Caglar, F.M. Coskun, M. Coskun, Y. Caglar, A. Turut, An experimental investigation: the impact of cobalt doping on optical properties of YbFeO3-ẟ thin film. Mater. Res. Bull. 119, 110567 (2019)

    Article  Google Scholar 

  19. SCh. Sarma, U. Subbarao, Y. Khulbe, R. Jana, S.C. Peter, Are we underrating rare-earth as an electrocatalyst? The effect of their substitution in palladium nanoparticles enhances the activity towards ethanol oxidation reaction. J. Mater. Chem. A 5, 23369–23381 (2017)

    Article  Google Scholar 

  20. N. Paunovic, Z.D. Mitrovic, R. Scurtu, S. Askrabic, M. Prekajski, B. Matovic, Z.V. Popovic, Suppression of inherent ferromagnetism in Pr-doped CeO2 nanocrystals. Nanoscale 4, 5469–5476 (2012)

    Article  ADS  Google Scholar 

  21. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112, 387 (2013)

    Article  ADS  Google Scholar 

  22. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    ADS  Google Scholar 

  23. A.P. Barranco, J.D.S. Guerra, R.L. Noda, E.B. Araujo, Ionized oxygen vacancy-related electrical conductivity in (Pb1−xLax) (Zr0.90Ti0.10)1–x/4O3 ceramics. J. Phys. D Appl. Phys. 41, 215503 (2008)

    Article  ADS  Google Scholar 

  24. J. Wu, J. Wang, Ferroelectric and impedance behavior of La- and Ti—co doped BiFeO3 thin films. J. Am. Ceram. Soc. 93, 2795–2803 (2010)

    Article  Google Scholar 

  25. V. Petrovsky, A. Manohar, F. Dogan, Dielectric constant of particles determined by impedance spectroscopy. J. Appl. Phys. 100, 014102 (2006)

    Article  ADS  Google Scholar 

  26. P.-F. Cheng, J. Song, Q.-P. Wang, S.-T. Li, J.-Y. Li, K.-N. Wu, Fine representation of dielectric properties by impedance spectroscopy. J. Alloy. Compd. 740, 36–41 (2018)

    Article  Google Scholar 

  27. H.E. Sekrafi, A.B.J. Kharrata, M.A. Wederni, K. Khirouni, N. C.-Boudjadaa, W. Boujelben, , Structural, electrical, dielectric properties and conduction mechanism of solgel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound. Mater. Res. Bull. 111, 329–337 (2019)

    Article  Google Scholar 

  28. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301 (1999)

    Article  Google Scholar 

  29. A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, D. Winkler, Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007)

    Article  ADS  Google Scholar 

  30. A.O.A. Keelani, S. Husain, W. Khan, Temperature dependent dielectric properties and ac conductivity of GdFe1−xMnxO3 (0 ≤ x ≤ 0.3) perovskites. J. Mater. Sci. Mater. Electron. 30, 20119–20131 (2019)

    Article  Google Scholar 

  31. E. Kroumova, M. Aroyo, J.P. Mato, A. Kirov, C. Capillas, S. Ivantchev, H. Wondratschek, Bilbao crystallographic server: useful databases and tools for phase-transition studies. Phase Trans. 76, 155–170 (2003)

    Article  Google Scholar 

  32. P.S.J. Bharadwaj, S. Kundu, V.S. Kollipara, K.B.R. Varma, Synergistic effect of trivalent (Gd3+, Sm3+) and high-valent (Ti4+) co-doping on antiferromagnetic YFeO3. RSC Adv. 10, 22183–22195 (2020)

    Article  ADS  Google Scholar 

  33. N. Koshizuka, S. Ushioda, Inelastic-light-scattering study of magnon softening in ErFeO3. Phys. Rev. B 22, 5394–5399 (1980)

    Article  ADS  Google Scholar 

  34. V.B. Podobedov, A. Weber, D.B. Romero, J.P. Rice, H.D. Drew, Effect of structural and magnetic transitions in La1−xMxMnO3 (M = Sr, Ca) single crystals in Raman scattering. Phys. Rev. B 58, 43–46 (1998)

    Article  ADS  Google Scholar 

  35. A.B. Murphy, Band-gap determination from diffuse reflectance measurement of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mat. Sol. Cells 91, 1326–1337 (2007)

    Article  Google Scholar 

  36. C. Rajashree, A.R. Balu, V.S. Nagarethinam, Properties of Cd doped PbS thin films: doping concentration effect. Surf. Eng. 31, 316–321 (2015)

    Article  Google Scholar 

  37. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)

    Article  ADS  Google Scholar 

  38. T.S. Moss, The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Sect. B 67, 775–782 (1954)

    Article  ADS  Google Scholar 

  39. O. Polat, M. Caglar, F.M. Coskun, D. Sobola, M. Konečný, M. Coskun, Y. Caglar, A. Turut, Examination of optical properties of YbFeO3 films via doping transition element osmium. Opt. Mater. 105, 109911 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) through Grant No: 116F025. We acknowledge CEITEC Nano Research Infrastructure supported by MEYS CR (LM 2018110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Polat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, O., Coskun, M., Sobola, D. et al. Electrical and optical characterization of Os-substituted rare-earth orthoferrite YbFeO3-γ powders. Appl. Phys. A 127, 19 (2021). https://doi.org/10.1007/s00339-020-04182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04182-1

Keywords

Navigation