Skip to main content
Log in

Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical properties of polyvinylpyrrolidine (PVP) polymer have been enhanced using ternary Zn1-xSnxS as a filler for UV-region optical applications. Solution casting technique is used to prepare different Sn molar ratios (x: 0–0.3) in Zn1-xSnxS filled PVP polymeric composite films (1.0 wt.%). SEM, FT-IR and UV–visible-NIR spectrophotometry is utilized to characterize the optical properties of the plain PVP and polymeric composite films. SEM images reveal the homogeneous dispersion of the filler (Zn1-xSnxS) in the host PVP matrix. The FT-IR spectroscopic measurements ensure the successful interaction of ternary Zn1-xSnxS material and the host PVP polymer. The cut off transmittance edge is shifted from 260 nm (host PVP) to 390 nm (polymeric composite). The direct optical energy bandgap of the prepared polymeric composite films are shifted from 4.78 eV (plain PVP) to 3.45 eV for Zn0.7Sn0.3S polymeric composite film. An enhancement of the refractive index (n) and the optical conductivity (σopt.) of the polymeric composite films is achieved as compared with those of the plain one. The single oscillator (E0) and dispersion (Ed) energies of the polymeric composite films were determined using Wemple and DiDomenico (WDD) model. The prepared polymeric composite films are strongly recommended for UV-region optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Badawi, S.S. Alharthi, N.Y. Mostafa, M.G. Althobaiti, T. Altalhi, Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl. Phys. A 125(12), 858 (2019)

    Article  ADS  Google Scholar 

  2. A. Badawi, S.S. Alharthi, Controlling the optical and mechanical properties of polyvinyl alcohol using Ag2S semiconductor for environmentally friendly applications. Mater. Sci. Semicond. Process. 116, 105139 (2020)

    Article  Google Scholar 

  3. S.S. Alharthi, A. Alzahrani, M.A.N. Razvi, A. Badawi, M.G. Althobaiti, Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. J. Inorg. Organomet. Polym. Mater. 30(10), 3878–3885 (2020)

    Article  Google Scholar 

  4. N.M. Deghiedy, S.M. El-Sayed, Evaluation of the structural and optical characters of PVA/PVP blended films. Opt. Mater. 100, 109667 (2020)

    Article  Google Scholar 

  5. B. Yalagala, S. Khandelwal, J. Deepika, S. Badhulika, Wirelessly destructible MgO-PVP-Graphene composite based flexible transient memristor for security applications. Mater. Sci. Semicond Process. 104, 104673 (2019)

    Article  Google Scholar 

  6. A. Badawi, Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl. Phys. A 126(5), 335 (2020)

    Article  ADS  Google Scholar 

  7. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J. Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017)

    Article  Google Scholar 

  8. N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, Optical, thermophysical and electrical characterization of PMMA (CdSe QDs) composite films. J. Polym. Res. 20(2), 1–8 (2013)

    Article  Google Scholar 

  9. J. Al-Osaimi, N. Al-Hosiny, S. Abdallah, A. Badawi, Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran. Polym. J. 23(6), 437–443 (2014)

    Article  Google Scholar 

  10. A.A. Alhazime, Effect of nano CuO doping on structural, thermal and optical properties of PVA/PEG blend. J Inorg Organomet Polym Mater 30(11), 4459–4467 (2020)

    Article  Google Scholar 

  11. A. Uma Maheswari, K.K. Anjali, M. Sivakumar, Optical absorption enhancement of PVP capped TiO2 nanostructures in the visible region. Solid State Ionics 337, 33–41 (2019)

    Article  Google Scholar 

  12. K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 44(41), 17883–17905 (2015)

    Article  Google Scholar 

  13. M.S. Refat, M.M. Eltabey, I.A. Ali, H.E. Hassan, Optical and electrical characteristics of thin PMMA sheets doped with Cu–Zn ferrite nanoparticles. Appl. Phys. A 126(3), 229 (2020)

    Article  ADS  Google Scholar 

  14. S. A. Nouh, K. Benthami, A. Abou Elfadl, N. T. El-Shamy, M. J. Tommalieh, Structural, thermal and optical characteristics of laser-exposed Pd/PVA nanocomposite. Polymer Bulletin, (2020). https://doi.org/10.1007/s00289-020-03188-2

  15. A. Badawi, N. Al Hosiny, Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films. Chin. Phys. B 24(10), 105101 (2015)

    Article  ADS  Google Scholar 

  16. J. Al-Osaimi, N. Alhosiny, A. Badawi, S. Abdallah, The effects of CNTs types on the structural and electrical properties of CNTs/PMMA nanocomposite films. Int. J. Eng. Technol. 13(2), 77–79 (2013)

    Google Scholar 

  17. E.F.M. El-Zaidia, H.A.M. Ali, T.A. Hamdalla, A.A.A. Darwish, T.A. Hanafy, Optical linearity and bandgap analysis of Erythrosine B doped in polyvinyl alcohol films. Opt. Mater. 100, 109661 (2020)

    Article  Google Scholar 

  18. Z.A. Alrowaili, M. Ezzeldien, M.I. Mohammed, I.S. Yahia, Design of a low-cost laser CUT-OFF filters using carmine dye-doped PVA polymeric composite films. Res Phys 18, 103203 (2020)

    Google Scholar 

  19. M. Kudryashov, A. Logunov, D. Gogova, A. Mashin, G. De Filpo, Ag/PVP/PAN nanocomposites with triangular nanoprisms of silver synthesized by UV-induced polymerization: morphology manipulation and optical properties tuning. Opt. Mater. 101, 109746 (2020)

    Article  Google Scholar 

  20. G.A.M. Amin, M.H.A.-E. Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 1(2), 025024 (2014)

    Article  ADS  Google Scholar 

  21. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Effect of V and Y doping on the structural, optical and electronic properties of CdS (hexagonal and cubic phases). Appl. Phys. A 125(2), 132 (2019)

    Article  ADS  Google Scholar 

  22. A. Badawi, Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J. Mater. Sci. Mater. Electron. 26(6), 3450–3457 (2015)

    Article  Google Scholar 

  23. T.K. Chaudhuri, M.G. Patel, High refractive index films of ZnS/PVP nanocomposite by in situ thermolysis. J. Exp. Nanosci. 10(2), 135–147 (2015)

    Article  Google Scholar 

  24. M. Almasi Kashi, S. Alikhanzadeh-Arani, E. Bagherian Jebeli, A.H. Montazer, Detailed magnetic characteristics of cobalt ferrite (CoxFe3−xO4) nanoparticles synthesized in the presence of PVP surfactant. Appl. Phys. A 126(4), 250 (2020)

    Article  ADS  Google Scholar 

  25. J.Q.M. Almarashi, M.H. Abdel-Kader, Exploring nano-sulfide enhancements on the optical, structural and thermal properties of polymeric nanocomposites. J Inorg Organomet Polym Mater 30(8), 3230–3240 (2020)

  26. D. Amaranatha Reddy, C. Liu, R.P. Vijayalakshmi, B.K. Reddy, Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles. J. Alloys Compd. 582, 257–264 (2014)

    Article  Google Scholar 

  27. L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, S.-Q. Zhan, Efficient ultraviolet emission of ZnS nanospheres: co doping enhancement. Mater. Lett. 100, 237–240 (2013)

    Article  Google Scholar 

  28. D.A. Reddy, D.H. Kim, S.J. Rhee, B.W. Lee, C. Liu, Tunable blue-green-emitting wurtzite ZnS: Mg nanosheet-assembled hierarchical spheres for near-UV white LEDs. Nanoscale Res. Lett. 9(20), 1–8 (2014)

    ADS  Google Scholar 

  29. P.B. Hammannavar, B. Lobo, Experimental study of the microstructure and optical properties of PVA-PVP blend filled with lead nitrate. Mater. Today Proc. 5(1, Part B), 2677–2684 (2018)

    Article  Google Scholar 

  30. H.M. Zidan, N.A. El-Ghamaz, A.M. Abdelghany, A. Lotfy, Structural and electrical properties of PVA/PVP blend doped with methylene blue dye. Int. J. Electrochem. Sci. 11, 9041–9056 (2016)

    Article  Google Scholar 

  31. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B 538, 160–166 (2018)

    Article  ADS  Google Scholar 

  32. A.M. Abdelghany, A.H. Oraby, M.O. Farea, Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Phys. B 560, 162–173 (2019)

    Article  ADS  Google Scholar 

  33. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, C. Ramu, Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. J. Sci. Adv. Mater. Dev. 4(2), 230–236 (2019)

    Google Scholar 

  34. I.A. Safo, M. Werheid, C. Dosche, M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 1, 3095–3106 (2019)

    Article  ADS  Google Scholar 

  35. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019)

    Article  Google Scholar 

  36. N.S. Alghunaim, H.M. Alhusaiki-Alghamdi, Role of ZnO nanoparticles on the structural, optical and dielectric properties of PVP/PC blend. Phys. B 560, 185–190 (2019)

    Article  ADS  Google Scholar 

  37. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10(2), 607–613 (2010)

    Article  ADS  Google Scholar 

  38. T. Tański, W. Matysiak, Ł Krzemiński, P. Jarka, K. Gołombek, Optical properties of thin fibrous PVP/SiO2 composite mats prepared via the sol-gel and electrospinning methods. Appl. Surf. Sci. 424, 184–189 (2017)

    Article  ADS  Google Scholar 

  39. B.M. Baraker, B. Lobo, Microstructure of cadmium chloride doped PVA/PVP blend films. Mater. Today Proc. 5(1, Part 3), 3036–3043 (2018)

    Article  Google Scholar 

  40. K. Rajesh, V. Crasta, N.B. Rithin Kumar, G. Shetty, P.D. Rekha, Structural, optical mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 26(4), 99 (2019)

    Article  Google Scholar 

  41. A.H. Mohamad, O.G. Abdullah, S.R. Saeed, Effect of very fine nanoparticle and temperature on the electric and dielectric properties of MC-PbS polymer nanocomposite films. Results Phys. 16, 102898 (2020)

    Article  Google Scholar 

  42. G. Santhosh, G.P. Nayaka, B.S. Madhukar, Siddaramaiah, optical properties of PVP/Li3GaO3 nanocomposites. Mater. Today Proc. 4(11, Part 3), 12061–12069 (2017)

    Article  Google Scholar 

  43. L. Kumari, S. Gupta, I. Singh, O. Prasad, L. Sinha, M. Gupta, Thermodynamic, spectroscopic and DFT studies of binary mixtures of poly(vinylpyrrolidone)(PVP) with ethanol, 1-propanol and 1-butanol. J Mol Liq 299, 112237 (2020)

    Article  Google Scholar 

  44. J. Tauc, Amorphous and Liquid Semiconductors (Springer, Boston, 1974).

    Book  Google Scholar 

  45. R. Boughalmi, A. Boukhachem, I. Gaied, K. Boubaker, M. Bouhafs, M. Amlouk, Effect of tin content on the electrical and optical properties of sprayed silver sulfide semiconductor thin films. Mater. Sci. Semicond. Process. 16(6), 1584–1591 (2013)

    Article  Google Scholar 

  46. M. Rashad, Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 105, 109857 (2020)

    Article  Google Scholar 

  47. A. Javed, A. Qurat ul, M. Bashir, Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J. Alloys Compd. 759, 14–21 (2018)

    Article  Google Scholar 

  48. N.Y. Mostafa, A. Badawi, S.I. Ahmed, Influence of Cu and Ag doping on structure and optical properties of In2O3 thin film prepared by spray pyrolysis. Results Phys. 10, 126–131 (2018)

    Article  ADS  Google Scholar 

  49. O.G. Abdullah, S.B. Aziz, M.A. Rasheed, Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys. 6, 1103–1108 (2016)

    Article  ADS  Google Scholar 

  50. G.R. Suma, N.K. Subramani, K.N. Shilpa, S. Sachhidananda, S.V. Satyanarayana, Siddaramaiah, Effect of Ce0.5Zr0.5O2 nano fillers on structural and optical behaviors of poly(vinyl alcohol). J. Mater. Sci. Mater. Electron. 28(14), 10707–10714 (2017)

    Article  Google Scholar 

  51. Z.K. Heiba, M.B. Mohamed, Effect of annealed and Mg-doped nano ZnO on physical properties of PVA. J. Mol. Struct. 1181, 507–517 (2019)

    Article  ADS  Google Scholar 

  52. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. 26(7), 5303–5309 (2015)

    Google Scholar 

  53. A. Bouzidi, K. Omri, W. Jilani, H. Guermazi, I.S. Yahia, Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym. Mater. 28(3), 1114–1126 (2018)

    Article  Google Scholar 

  54. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338–1351 (1971)

    Article  ADS  Google Scholar 

  55. Z. K. Heiba, M. B. Mohamed, N. Y. Mostafa, A. M. El-Naggar, Structural and Optical Properties of Cd1−xMnxFe2O4/PMMA Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, (2019)

Download references

Acknowledgment

The Author thanks Taif University Researchers Supporting Project number (TURSP-2020/12), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A. Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications. Appl. Phys. A 127, 51 (2021). https://doi.org/10.1007/s00339-020-04157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04157-2

Keywords

Navigation