Skip to main content
Log in

Hydrogen sensing behaviour of platinum and palladium functionalized silicon nanowalls

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In a chemi-resistive gas sensor, the sensing properties are essentially improved through surface functionalization. In the present work, silicon nanowalls (SiNWs) were carved on silicon wafers by metal-assisted chemical etching technique. Over the SiNWs, platinum (Pt) and palladium (Pd) nanoparticles were deposited through a fluoride-free galvanic displacement deposition technique. The surface-decorated SiNWs were then evaluated for their sensing behaviour towards hydrogen (H2) gas. The morphological investigation revealed vertically aligned SiNW architecture with Pt and Pd nanoparticles sprinkled over the wall-tips. The crystallographic analysis indicated that the SiNWs has the original single-crystalline nature of the silicon wafer even after surface modification. Comparison of H2 gas sensing efficacies indicates an ~ 8 and ~ 4-fold corresponding increase in Pd and Pt functionalized SiNWs, at 200 °C, with respect to pristine SiNWs. A plausible sensing mechanism is suggested with a suitable parallel resistance model. The combinatorial effect of single-crystalline SiNWs and catalytic properties of Pt and Pd resulted in enhanced sensing characteristics. Moreover, the economically scalable aptitude of the fabrication technique makes them suitable for real-time and facile industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B Chem. 157, 329–352 (2011)

    Article  Google Scholar 

  2. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, A.C.S. Appl, Mater. Interfaces 5, 2013–2021 (2013)

    Article  Google Scholar 

  3. M. Gao, M. Cho, H.J. Han, Y.S. Jung, I. Park, Small 14, 1703691 (2018)

    Article  Google Scholar 

  4. S. Mourya, A. Kumar, J. Jaiswal, G. Malik, B. Kumar, R. Chandra, Sens. Actuators B Chem. 283, 373–383 (2019)

    Article  Google Scholar 

  5. A.K. Prasad, P.K. Sahoo, S. Dhara, S. Dash, A.K. Tyagi, Mater. Chem. Phys. 211, 355–360 (2018)

    Article  Google Scholar 

  6. N. Singh, A. Kumar, D. Kaur, Sens. Actuators B Chem. 262, 162–170 (2018)

    Article  Google Scholar 

  7. S. Mohd Chachuli, M. Hamidon, M. Mamat, M. Ertugrul, N. Abdullah, Sensors 18, 2483 (2018)

    Article  Google Scholar 

  8. S. Öztürk, N. Kılınç, J. Alloys Compd. 674, 179–184 (2016)

    Article  Google Scholar 

  9. Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, J. Alloys Compd. 488, L21–L25 (2009)

    Article  Google Scholar 

  10. A. Abburi, N. Abrams, W.J. Yeh, J. Porous Mater. 19, 543–549 (2012)

    Article  Google Scholar 

  11. D. Gupta, D. Dutta, M. Kumar, P. Barman, C. Sarkar, S. Basu, S. Hazra, Sens. Actuators B Chem. 196, 215–222 (2014)

    Article  Google Scholar 

  12. A. Mirzaei, S.Y. Kang, S.-W. Choi, Y.J. Kwon, M.S. Choi, J.H. Bang, S.S. Kim, H.W. Kim, Appl. Surf. Sci. 427, 215–226 (2018)

    Article  ADS  Google Scholar 

  13. L.B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjersi, Prog. Nat. Sci. 25, 101–110 (2015)

    Article  Google Scholar 

  14. J. Baek, B. Jang, M.H. Kim, W. Kim, J. Kim, H.J. Rim, S. Shin, T. Lee, S. Cho, W. Lee, Sens. Actuators B Chem. 256, 465–471 (2018)

    Article  Google Scholar 

  15. J.-S. Noh, H. Kim, B.S. Kim, E. Lee, H.H. Cho, W. Lee, J. Mater. Chem. 21, 15935–15939 (2011)

    Article  Google Scholar 

  16. K. Hassan, A.I. Uddin, G.-S. Chung, Int. J. Hydrog. Energy 41, 10991–11001 (2016)

    Article  Google Scholar 

  17. S.Y. Sayed, F. Wang, M. Malac, A. Meldrum, R.F. Egerton, J.M. Buriak, ACS Nano 3, 2809–2817 (2009)

    Article  Google Scholar 

  18. L.A. Porter, H.C. Choi, A.E. Ribbe, J.M. Buriak, Nano Lett. 2, 1067–1071 (2002)

    Article  ADS  Google Scholar 

  19. C. Fang, A. Agarwal, E. Widjaja, M.V. Garland, S.M. Wong, L. Linn, N.M. Khalid, S.M. Salim, N. Balasubramanian, Chem. Mater. 21, 3542–3548 (2009)

    Article  Google Scholar 

  20. C. Carraro, R. Maboudian, L. Magagnin, Surf. Sci. Rep. 62, 499–525 (2007)

    Article  ADS  Google Scholar 

  21. A. Gutés, C. Carraro, R. Maboudian, A.C.S. Appl, Mater. Interfaces 3, 1581–1584 (2011)

    Article  Google Scholar 

  22. B. Fabre, L. Hennous, S. Ababou-Girard, C. Meriadec, A.C.S. Appl, Mater. Interfaces 5, 338–343 (2013)

    Article  Google Scholar 

  23. Z. Peng, H. Hu, M.I.B. Utama, L.M. Wong, K. Ghosh, R. Chen, S. Wang, Z. Shen, Q. Xiong, Nano Lett. 10, 3940–3947 (2010)

    Article  ADS  Google Scholar 

  24. G.W. Watson, R.P. Wells, D.J. Willock, G.J. Hutchings, Chem. Commun. 705–706 (2000).

  25. A. Salomonsson, M. Eriksson, H. Dannetun, J. Appl. Phys. 98, 014505 (2005)

    Article  ADS  Google Scholar 

  26. K. Skucha, Z. Fan, K. Jeon, A. Javey, B. Boser, Sens. Actuators B Chem. 145, 232–238 (2010)

    Article  Google Scholar 

  27. A.K. Behera, R. Viswanath, C. Lakshmanan, T. Mathews, M. Kamruddin, Nano-Struct Nano-Obj 21, 100424 (2020)

    Article  Google Scholar 

  28. A.K. Behera, R. Viswanath, C. Lakshmanan, K. Madapu, M. Kamruddin, T. Mathews, Microporous Mesoporous Mater. 273, 99–106 (2019)

    Article  Google Scholar 

  29. M. Baca, K. Cendrowski, W. Kukulka, G. Bazarko, D. Moszyński, B. Michalkiewicz, R. Kalenczuk, B. Zielinska, Nanomaterials 8, 639 (2018)

    Article  Google Scholar 

  30. A.K. Behera, R. Viswanath, C. Lakshmanan, S. Polaki, R. Sarguna, T. Mathews, Thermal oxidation and nitridation of Si nanowalls prepared by metal assisted chemical etching, AIP Conference Proceedings, AIP Publishing 2018, pp. 050062.

  31. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing, USA, 1956).

    Google Scholar 

  32. W. Ye, H. Tong, C. Wang, Study on microcontamination of silver onto p-type crystalline silicon from an aqueous solution using cyclic voltammetry. Microchim Acta 152, 85–88 (2005)

    Article  Google Scholar 

  33. Y. Qin, D. Liu, T. Zhang, Z. Cui, A.C.S. Appl, Mater. Interfaces 9, 28766–28773 (2017)

    Article  Google Scholar 

  34. Y. Qin, Y. Wang, Y. Liu, X. Zhang, Nanotechnology 27, 465502 (2016)

    Article  ADS  Google Scholar 

  35. X. Wang, F. Sun, Y. Duan, Z. Yin, W. Luo, Y. Huang, J. Chen, J. Mater. Chem. C 3, 11397–11405 (2015)

    Article  Google Scholar 

  36. S. Ahlers, G. Müller, T. Doll, Sens. Actuators B Chem. 107, 587–599 (2005)

    Article  Google Scholar 

  37. U. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer Science & Business Media, Germany, 2007).

    Google Scholar 

  38. M. Löfdahl, M. Eriksson, M. Johansson, I. Lundström, J. Appl. Phys. 91, 4275–4280 (2002)

    Article  ADS  Google Scholar 

  39. F. Yang, K.C. Donavan, S.-C. Kung, R.M. Penner, Nano Lett. 12, 2924–2930 (2012)

    Article  ADS  Google Scholar 

  40. M. Johansson, L.-G. Ekedahl, Appl. Surf. Sci. 173, 122–133 (2001)

    Article  ADS  Google Scholar 

  41. C. Liu, Q. Kuang, Z. Xie, L. Zheng, Cryst. Eng. Commun. 17, 6308–6313 (2015)

    Article  Google Scholar 

  42. F. Annanouch, S. Roso, Z. Haddi, S. Vallejos, P. Umek, C. Bittencourt, C. Blackman, T. Vilic, E. Llobet, Thin Solid Films 618, 238–245 (2016)

    Article  ADS  Google Scholar 

  43. N. Naderi, M. Hashim, T. Amran, Superlattices Microstruct. 51, 626 (2012)

    Article  ADS  Google Scholar 

  44. B.R. Huang, Y.-K. Yang, H.-L. Cheng, Nanotechnology 24, 475502 (2013)

    Article  Google Scholar 

  45. J. Kanungo, H. Saha, S. Basu, Sens Actuators B Chem 147, 145 (2010)

    Article  Google Scholar 

  46. G.B. Pour, L.F. Aval, Results Phys. 7, 1993 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank DAE, Government of India for the research support. The authors also thank to Lakshmanan Chelladurai and Reshma P Radhakrishnan of IGCAR for gas sensing and Sruthi Mohan of IGCAR for GIXRD measurements. UGC-DAE CSR, Kalpakkam Node is also kindly acknowledged. Raghavan Nadar Viswanath thanks Vinayaka Mission Research Foundation, Chennai 603 104 for the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raghavan Nadar Viswanath or Tom Mathews.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 995 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, A.K., Viswanath, R.N., Manovah David, T. et al. Hydrogen sensing behaviour of platinum and palladium functionalized silicon nanowalls. Appl. Phys. A 127, 40 (2021). https://doi.org/10.1007/s00339-020-04154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04154-5

Keywords

Navigation