Skip to main content

Advertisement

Log in

Structural, electrochemical and optical properties of 1,2,4-triazine derivative

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural, optical and electrochemical properties of 4-amino-3-mercapto-6-(2-(2-thienyl)vinyl)-1,2,4-triazin-5(4H)-one donor (AMT) in powder and thin film forms are studied. The thermogravimetric curves (TGA and DTA) of AMT solid powder are performed for recognizing its thermal stability and thermal degradation kinetics. Integral method using Coats–Redfern and Horowitz–Metzger equations are applied in the dynamic thermal data analysis. The electrochemical reduction and oxidation potential of AMT organic material are investigated. AMT solid powder are characterized by means of optically diffused reflectance spectroscopy (DRS) based on the Kubelka–Munk model. Field emission scanning electron microscope image is characterized by the formation of nanostructure shape with average particle size 70 nm. The optical features of the AMT organic thin films are characterized by UV–Vis–NIR spectroscopy, Photoluminescence spectroscopy (PL) and Fourier transform infrared (FT-IR) spectroscopy. The optical properties such as absorption coefficient, optical gaps, refractive index, single effective oscillator energy (Eo) and dispersion energy (Ed) of the AMT organic thin films are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Antohe, S. Iftimie, L. Hrostea, V.A. Antohe, M. Girtan, A critical review of photovoltaic cells based on organic monomeric and polymeric thin film heterojunctions. Org. Electron. 642, 219–231 (2017)

    Google Scholar 

  2. O. Marinov, M.J. Deen, J.A. Jiménez-Tejada, C.H. Chen, Variable-range hopping charge transport in organic thin-film transistors. Phys. Rep. 844, 1–105 (2020)

    ADS  Google Scholar 

  3. H. Chen, S. Yang, Z. Tsai, W. Hung, T. Wang, K. Wong, 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs. J. Mater. Chem. 19, 8112–8118 (2009)

    Google Scholar 

  4. K.M. Omer, S. Ku, Y. Chen, K. Wong, A.J. Bard, Electrochemical behavior and electrogenerated chemiluminescence of star-shaped D−A compounds with a 1,3,5-triazine core and substituted fluorene arms. J. Am. Chem. Soc. 132, 10944–10952 (2010)

    Google Scholar 

  5. S. Ren, D. Zeng, H. Zhong, Y. Wang, S. Qian, Q. Fang, Star-shaped donor-π-acceptor conjugated oligomers with 1,3,5-triazine cores: convergent synthesis and multifunctional properties. J. Phys. Chem. B 114, 10374–10383 (2010)

    Google Scholar 

  6. H. Zhong, H. Lai, Q. Fang, New conjugated triazine based molecular materials for application in optoelectronic devices: design, synthesis, and properties. J. Phys. Chem. C 115, 2423–2427 (2011)

    Google Scholar 

  7. G.E. Zervaki, M.S. Roy, M.K. Panda, P.A. Angaridis, E. Chrissos, G.D. Sharma, A.G. Coutsolelos, Efficient sensitization of dye-sensitized solar cells by novel triazine-bridged porphyrin-porphyrin dyads. Inorg. Chem. 52, 9813–9825 (2013)

    Google Scholar 

  8. Z. Zhang, R. Liu, X. Zhu, Y. Li, J. Chang, H. Zhu, L. Ma, W. Lv, J. Guo, Synthesis and luminescent properties of star-burst D-π-A compounds based on 1,3,5 triazine core and carbazole end-capped phenylene ethynylene arms. J. Lumin. 156, 130–136 (2014)

    Google Scholar 

  9. G.M. Ziarani, R. Moradi, N. Lashgari, H.G. Kruger, Metal-Free Synthetic Organic Dyes (Elsevier, Amsterdam, 2018), pp. 197–217

    Google Scholar 

  10. R.M. Batista, S.P. Costa, M. Belsley, C. Lodeiro, M.M.M. Raposo, Synthesis and characterization of novel (oligo) thienyl-imidazo-phenanthrolines as versatile π-conjugated systems for several optical applications. Tetrahedron 64, 9230–9238 (2008)

    Google Scholar 

  11. M.M.M. Raposo. A.M.C. Fonseca, M.C.R. Castro, M. Belsley, M.F.S. Cardoso, L.M. Carvalho, P.J. Coelho, Synthesis and characterization of novel diazenes bearing pyrrole, thiophene and thiazole heterocycles as efficient photochromic and nonlinear optical (NLO) materials. Dyes Pigment 91, 62–73 (2011)

  12. H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J.J. Brown, C. Adach, High-efficiency organic electrophosphorescent diodes using 1,3,5-triazine electron transport materials. Chem. Mater. 16, 1285–1291 (2004)

    Google Scholar 

  13. M.S. Refat, H.A. Saad, A.A. Adam, Proton transfer complexes based on some p-acceptors having acidic protons with 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4H)-one donor: synthesis and spectroscopic characterizations. J. Mol. Struct. 995, 116–124 (2011)

    ADS  Google Scholar 

  14. H.A. Saad, M.M. Youssef, M.A. Mosselhi, Microwave assisted synthesis of some new fused 1,2,4-triazines bearing thiophene moieties with expected pharmacological activity. Molecules 16, 4937–4957 (2011)

    Google Scholar 

  15. S. Lee, G. Kwon, K. Ku, K. Yoon, S.K. Jung, H.-D. Lim, K. Kang, Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 30, 1704682 (2018)

    Google Scholar 

  16. D.-H. Yang, Z.-Q. Yao, D. Wu, Y.-H. Zhang, Z. Zhou, X.-H. Bu, Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J. Mater. Chem. A 4, 18621–18627 (2016)

    Google Scholar 

  17. K. Sakaushi, E. Hosono, G. Nickerl, T. Gemming, H. Zhou, S. Kaskel, J. Eckert, Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 4, 1485 (2013)

    ADS  Google Scholar 

  18. S.-Y. Li, W.-H. Li, X.-L. Wu, Y. Tian, J. Yue, G. Zhu, Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 10, 7695–7701 (2019)

    Google Scholar 

  19. S.-I. Kato, S. Jin, T. Kimura, N. Yoshikawa, D. Nara, K. Imamura, Y. Shiota, K. Yoshizawa, R. Katoono, T. Yamanobe, H. Uehara, Y. Nakamura, Trithiazolyl-1,3,5-triazines bearing decyloxybenzene moieties: synthesis, photophysical and electrochemical properties, and self-assembly behavior. Org. Biomol. Chem. 16, 3584–3595 (2018)

    Google Scholar 

  20. K. Idzik, J. Soloducho, M. Lapkowski, P. Data, A new route to light emitting organic materials based on triazine derivatives. J. Fluoresc. 20, 1069–1075 (2010)

    Google Scholar 

  21. H.-F. Chen, C.-T. Liao, H.-C. Su, Y.-S. Yeh, K.-T. Wong, Highly efficient exciplex emission in solid-state light-emitting electrochemical cells based on mixed ionic hole-transport triarylamine and ionic electron-transport 1,3,5-triazine derivatives. J. Mater. Chem. C 1, 4647 (2013)

    Google Scholar 

  22. P. Data, P. Zassowski, M. Lapkowski, J.V. Grazulevicius, N.A. Kukhta, R.R. Reghu, Electrochromic behaviour of triazine based ambipolar compounds. Electrochim. Acta 192, 283–295 (2016)

    Google Scholar 

  23. T. Murase, M. Fujita, Highly blue luminescent triazine-amine conjugated oligomers. J. Org. Chem. 70, 9269–9278 (2005)

    Google Scholar 

  24. H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J.J. Brown, C. Adachi, 'High-efficiency organic electrophosphorescent diodes using 1,3,5 triazine electron transport materials. Chem. Mater. 16, 1285–1291 (2004)

    Google Scholar 

  25. M.M. Rothmann, S. Haneder, E. Da Como, C. Lennartz, C. Schildknecht, P. Strohriegl, Donor-substituted 1,3,5-triazines as host materials for blue phosphorescent organic light-emitting diodes. Chem. Mater. 22, 2403–2410 (2010)

    Google Scholar 

  26. S. Ren, D. Zeng, H. Zhong, Y. Wang, S. Qian, Q. Fang, Star-shaped donor π-acceptor conjugated oligomers with 1,3,5-triazine cores: convergent synthesis and multifunctional properties. J. Phys. Chem. B 114, 10374–10383 (2010)

    Google Scholar 

  27. H. Zhong, H. Lai, Q. Fang, New conjugated triazine based molecular materials for application in optoelectronic devices: design synthesis, and properties. J. Phys. Chem. C 115, 2423–2427 (2011)

    Google Scholar 

  28. A.L. Kanibolotsky, I.F. Perepichka, P.J. Skabara, Star-shaped π -conjugated oligomers and their applications in organic electronics and photonics. Chem. Soc. Rev. 39, 2695 (2010)

    Google Scholar 

  29. S.-C. Lo, P.L. Burn, Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. Chem. Rev. 107, 1097–1116 (2007)

    Google Scholar 

  30. S. Ren, Q. Fang, Y. Lei, H. Fu, X. Chen, J. Du, A. Cao, New π-conjugated polymers containing 1,3,5-triazine units in the main chain: synthesis and optical and electrochemical properties of the polymers. Macromol. Rapid Commun. 26, 998–1001 (2005)

    Google Scholar 

  31. S. Ren, Q. Fang, F. Yu, D. Bu, Synthesis and optical and electrochemical properties of new p-conjugated 1,3,5-triazine-containing polymers. J. Polym. Sci. Part A Polym. Chem. 43, 6554–6561 (2005)

    ADS  Google Scholar 

  32. Q. Fang, S. Ren, B. Xu, J. Du, A. Cao, New π-conjugated polyaryleneethynylenes containing a 1,3,5-triazine unit in the main chain: synthesis and optical and electrochemical properties. J. Polym. Sci. Part A Polym. Chem. 44, 3797–3806 (2006)

    ADS  Google Scholar 

  33. F. Huang, H. Wu, Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010)

    Google Scholar 

  34. M.M. El-Nahass, Optical properties of tin diselenide films. J. Mater. Sci. 27, 6597–6604 (1992)

    ADS  Google Scholar 

  35. M.M. El-Nahass, H.A. Afify, A.-S. Gadallah, A.M. Hassanien, M. AttaKhedr, Effect of thermal annealing on structural and optical properties of titanyl phthalocyanine thin films. Mater. Sci. Semicond. Process. 27, 254–260 (2014)

    Google Scholar 

  36. M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, A. Tepore, Optical absorption of tellurium suboxide thin film. Phys. Status Solidi A 136, K101–K104 (1993)

    ADS  Google Scholar 

  37. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2010), p. 7

    Google Scholar 

  38. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. (Wiley, New York, 1986)

    Google Scholar 

  39. A.W. Coats, J.P. Redfern, Scholarly articles for kinetic parameters from thermogravimetric data. Nature 201, 68 (1964)

    ADS  Google Scholar 

  40. H.W. Horowitz, G. Metzger, A new analysis of thermogravimetric traces. Anal. Chem. 35, 1464 (1963)

    Google Scholar 

  41. G.A.M. Mersal, A.A. Adam, R.F. Hassan, M.S. Refat, Spectral and cyclic voltammetric studies of glyceryl guaiacolate drug in pure form and in situ chelation with some different transition metals. J. Mol. Liq. 237, 128–140 (2017)

    Google Scholar 

  42. J. Li, H. Zhong, H. Liu, T. Zhai, X. Wang, M. Liao, Y. Bando, R. Liua, B. Zou, One dimensional ternary Cu–Bi–S based semiconductor nanowires: synthesis, optical and electrical properties. J. Mater. Chem. 22, 17813–17819 (2012)

    Google Scholar 

  43. B. Philips-Invernizzi, D. Dupont, C. Caze, Bibliographical review for reflectance of diffusing media. Opt. Eng. 40, 1082–1092 (2001)

    ADS  Google Scholar 

  44. V. Mishra, M.K. Warshi, A. Sati, A. Kumar, V. Mishra, A. Sagdeo, R. Kuma, P.R. Sagdeo, Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semicond. Process. 86, 151–156 (2018)

    Google Scholar 

  45. M.M. El-Nahass, A.F. El-Deeb, H.S. Metwally, A.M. Hassanien, Influence of annealing on the optical properties of 5,10,15,20-tetraphenyl-21H, 23H-porphine iron (III) chloride thin films. Mate. Chem. Phys. 125, 247–251 (2011)

    Google Scholar 

  46. B. Andreas, I. Breunig, D.K. Buse, Modeling of X-ray-induced refractive index changes in poly(methyl methacrylate). Chem. Phys. Chem. 6, 1544–1553 (2005)

    Google Scholar 

  47. B.P. Kafle, Chemical Analysis and Material Characterization by Spectrophotometry (Elsevier, Amsterdam, 2020), pp. 269–296

    Google Scholar 

  48. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1350 (1971)

    ADS  Google Scholar 

  49. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973)

    ADS  Google Scholar 

  50. D. Edward Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), p. 265

    Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/04), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Altalhi or A. A. Atta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altalhi, T., Gobouri, A.A., Refat, M.S. et al. Structural, electrochemical and optical properties of 1,2,4-triazine derivative. Appl. Phys. A 126, 815 (2020). https://doi.org/10.1007/s00339-020-03995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03995-4

Keywords

Navigation