Skip to main content
Log in

Physical properties of perovskite SrHfO3 compound doped with S for photovoltaic applications: the ab initio study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The perovskite type oxide SrHfO3 had a huge scientist interest for the past few years thanks to its properties, which allowed it to be applied in different area, in our case we focused on the photovoltaic field application and it is known that this technology has been based on the use of semiconductors with a specific gap value since its birth, which indicates that the gap value is an important element who influences on the efficiency of panels. The aim of our work is based on reducing the gap value by applying different percentage of doping SrHfO3–xSx (x = 0%, 8% and 16%) and the determination of electronic and optical properties of all percentage of S using density functional theory (DFT). As a result we reduced the gap value from 5.60 eV corresponding to 0% of S to 2.09 eV corresponding to 16% of S and the band gap is changed from an indirect band gap equivalent to 0% of S to a direct band gap for 8% and 16% of S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Rose, De Novis Quibusdam Fossilibus, Quae in Montibus Uraliis Inveniuntur. Ann. Phys. 48, 558 (1839)

    Google Scholar 

  2. V.A. Popov, The Akhmatov mine in the south Urals: notes on mineralogy. Mineral. Alm. 8, 17 (2012)

    Google Scholar 

  3. B. Saadi, First-principles study on half-metallic properties of the Sr2GdReO6 double perovskite. J. Magn. Magn. Mater. 385, 124–128 (2015)

    Article  Google Scholar 

  4. B. Saadi, N. Bouarissa, M. Attallah, First-principles predictions on half-metallic results of RBaMn2O6-δ (R= Nd, Pr, La and δ= 0, 1) double Perovskite compounds. J. Supercond. Novel Magn. 33, 1737–1746 (2020)

    Article  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  6. Qi Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 13, 460–466 (2019)

    Article  ADS  Google Scholar 

  7. Z.K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on Organometal Halide Perovskite. Nat. Nanotechnol. 9, 687–692 (2014)

    Article  ADS  Google Scholar 

  8. S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light emitting devices. Nat. Nanotechnol. 10, 391–402 (2015)

    Article  ADS  Google Scholar 

  9. C. Zuo, H.J. Bolink, H. Han, J. Huang, D. Cahen, L. Ding, Advances in perovskite solar cells. Adv. Sci. 3, 1–16 (2016)

    Article  ADS  Google Scholar 

  10. F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S.D. Stranks, H.J. Snaith, M. Atatüre, R.T. Phillips, R.H. Friend, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014)

    Article  Google Scholar 

  11. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  12. H. Wang, D.H. Kim, Perovskite-based photodetectors: materials and devices. Chem. Soc. Rev. 46, 5204–5236 (2017)

    Article  Google Scholar 

  13. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr, Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  14. W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications. Nat. Energy 1, 1–8 (2016)

    Google Scholar 

  15. W. Tian, H. Zhou, L. Li, Hybrid organic-inorganic perovskite photodetectors. Small 13, 1702107 (2017)

    Article  Google Scholar 

  16. M. Petrović, V. Chellappan, S. Ramakrishna, Perovskites: solar cells and engineering applications-materials and device developments. Sol. Energy 122, 678–699 (2015)

    Article  ADS  Google Scholar 

  17. J. Chen, S. Zhou, S. Jin, H. Li, T. Zhai, Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 4, 11–27 (2016)

    Article  Google Scholar 

  18. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016)

    Article  ADS  Google Scholar 

  19. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015)

    Article  Google Scholar 

  20. N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, S.A. Haque, The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. Engl. 54, 8208–82012 (2015)

    Article  Google Scholar 

  21. C. Rossel, M. Sousa, C. Marchiori, J. Fompeyrine, D. Webb, D. Caimi, B. Mereu, A. Ispas, J.P. Locquet, H. Siegwart, R. Germann, A. Tapponnier, K. Babich, SrHfO3 as gate dielectric for future CMOS technology. Microelec. Eng. 84, 1869–1873 (2007)

    Article  Google Scholar 

  22. S. Cuffini, J.A. Guevara, Y.P. Mascarenhas, P. de la Presa, A. Ayala, A. Lopez Garcia, High temperature studies of Perovskite oxides: x-ray diffraction and PAC spectroscopy. Ceramica 31, 91–94 (1997)

    Google Scholar 

  23. B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, High-temperature phase transitions in SrHfO3. Phys. Rev. B 60, 2972 (1999)

    Article  ADS  Google Scholar 

  24. D.P.R. Sandeep, A. Shankar, A.P. Sakhya, T.P. Sinha, B. Merabet, M. Musa, H.-E. Saad, R. Khenata, A. Boochani, S. Solaymani, R.K. Thapa, Electronic and optical properties of cubic SrHfO3 at different pressures: a first principles study. Mater Chem Phys 186, 620–626 (2017)

    Article  Google Scholar 

  25. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN 2k, Augmented plane wave local orbitals program for calculating crystal properties, Vienna, Austria, (2001)

  26. R. Ubic, G. Subodh, The prediction of lattice constants in orthorhombic perovskites. J. Alloys Compd. 488, 374–379 (2009)

    Article  Google Scholar 

  27. R. Vali, Structural phases of SrHfO3. Solid State Commun. 148, 29–31 (2008)

    Article  ADS  Google Scholar 

  28. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.P. Locquet, J. Fompeyrine, D.J. Webb, C. Dieker, J.W. Seo, Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89, 053506 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Tahiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zitouni, H., Tahiri, N., El Bounagui, O. et al. Physical properties of perovskite SrHfO3 compound doped with S for photovoltaic applications: the ab initio study. Appl. Phys. A 126, 800 (2020). https://doi.org/10.1007/s00339-020-03987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03987-4

Keywords

Navigation