Skip to main content
Log in

Structural and electrical properties of Al/BiFeO3/ZrO2/n-Si structure for non-volatile memory application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this communication, the structural and electrical properties of metal–ferroelectric–insulator–silicon (MFIS) capacitor structure have been reported for non-volatile memory applications. Sol–gel with spin coating and rf sputtering process have been used for depositing BiFeO3 (BFO) and ZrO2 films, respectively. It has been observed that BFO film shows pure ferroelectric phase, uniform grain size and maximum refractive index at annealing temperature of 500 °C. Thermo-gravimetric analyzer and differential scanning calorimetry analysis indicate good agreement with X-ray diffraction of BFO film. In ZrO2 thin film, it has been observed that ZrO2 is in amorphous state at all annealing temperatures and the maximum refractive index has been found at annealing temperature of 400 °C. Al/ZrO2/n-Si (MIS), Al/BiFeO3/n-Si (MFS) and Al/BiFeO3/ZrO2/n-Si (MFIS) structures have been fabricated to investigate the electrical characteristics. The memory window has been observed by capacitance–voltage (C–V) characteristics and it improves from 1.9 V in MFS structure to 5.4 V in MFIS structure with 8 nm dielectric layer. Leakage current density has been observed by current density–gate voltage (J–V) characteristics and it is order of 10−5 A/cm2 in MF150 nmI8 nmS structure. No charge value degrades up to 1012 iteration cycles in MF150 nmI8 nmS structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Chen, Solid State Electron. 125, 25–38 (2016)

    Article  ADS  Google Scholar 

  2. J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Nanoscale Res. Lett. 9, 1–33 (2014)

    Article  ADS  Google Scholar 

  3. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nat. Mater. 4, 347–352 (2005)

    Article  ADS  Google Scholar 

  4. H. Ishiwara, M. Okuyama, Y. Arimoto, vol. 93 (Springer, 2004)

  5. S. Tehrani, J.M. Slaughter, E. Chen, M. Durlam, J. Shi, M. Deherrera, IEEE Trans. Magn. 35, 2814 (1999)

    Article  ADS  Google Scholar 

  6. K. Yagami, A.A. Tulapurkar, A. Fukushima, Y. Suzuki, J. Appl. Phys. 97, 2003 (2005)

    Article  Google Scholar 

  7. A. Carlos, P. De Araujo, L.D. Mcmillan, B.M. Melnick, J.D. Cuchiaro, J.F. Scott, Ferroelectrics 104, 241 (1990)

    Article  Google Scholar 

  8. Y. Fujisaki, I. Kunie, H. Ishiwara, Symp. Proc. Mater. Res. Soc. 1609, 1–16 (2001)

    Google Scholar 

  9. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)

    Article  Google Scholar 

  10. N. Ramadass, Mater. Sci. Eng. 36, 231 (1978)

    Article  Google Scholar 

  11. H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Paz de Araujo, B.M. Melnick, J.D. Cuchiaro, L.D. McMillan, J. Appl. Phys. 68, 5783 (1990)

    Article  ADS  Google Scholar 

  12. C.A.-P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)

    Article  ADS  Google Scholar 

  13. R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39, 70 (1968)

    Article  ADS  Google Scholar 

  14. C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  ADS  Google Scholar 

  15. J.R. Teague, R. Gerson, W.J. James, Solid State Commun. 8, 1073 (1970)

    Article  ADS  Google Scholar 

  16. S. Zheng, J. Wang, J. Zhang, H. Ge, Z. Chen, Y. Gao, J. Alloys Compd. 735, 945 (2018)

    Article  Google Scholar 

  17. S.K. Singh, H. Ishiwara, Jpn. J. Appl. Phys. 44, L734 (2005)

    Article  ADS  Google Scholar 

  18. H. Wu, P. Xue, Y. Lu, X. Zhu, J. Alloys Compd. 731, 471 (2018)

    Article  Google Scholar 

  19. M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2000)

    Article  ADS  Google Scholar 

  20. S.M. Selbach, M.-A. Einarsrud, T. Tybell, T. Grande, J. Am. Ceram. Soc. 90, 3430 (2007)

    Article  Google Scholar 

  21. K.Y. Yun, D. Ricinschi, T. Kanashima, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. Part 2 Lett. 43, 647–648 (2004)

    Article  Google Scholar 

  22. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science (80-) 299, 1719 (2003)

    Article  ADS  Google Scholar 

  23. D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009)

    Article  Google Scholar 

  24. T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel, M. Moert, C. Mazure, Microelectron. Reliab. 41, 947 (2001)

    Article  Google Scholar 

  25. Y. Arimoto, H. Ishiwara, MRS Bull., 823–828 (2004)

  26. R.-Z. Xiao, Z.-D. Zhang, V.O. Pelenovich, Z.-S. Wang, R. Zhang, H. Li, Y. Liu, Z.-H. Huang, D.-J. Fu, Chin. Phys. B 23, 77504 (2014)

    Article  Google Scholar 

  27. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083–1130 (2005). https://doi.org/10.1103/RevModPhys.77.1083

    Article  ADS  Google Scholar 

  28. K.P. Pandey, Appl. Phys. A 124, 507 (2018)

    Article  ADS  Google Scholar 

  29. Z. Hu, M. Li, Y. Zhu, S. Pu, X. Liu, B. Sebo, X. Zhao, S. Dong, Appl. Phys. Lett. 100, 252908 (2012)

    Article  ADS  Google Scholar 

  30. P.C. Juan, C.L. Sun, C.H. Liu, C.L. Lin, F.C. Mong, J.H. Huang, H.S. Chang, Microelectron. Eng. 109, 142 (2013)

    Article  Google Scholar 

  31. N.M. Murari, R. Thomas, S.P. Pavunny, J.R. Calzada, R.S. Katiyar, Appl. Phys. Lett. 94 (2009)

  32. H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, C.B. Eom, Y.H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 92, 062910 (2008)

    Article  ADS  Google Scholar 

  33. J. Hoffman, X. Pan, J.W. Reiner, F.J. Walker, J.P. Han, C.H. Ahn, T.P. Ma, Adv. Mater. 22, 2957 (2010)

    Article  Google Scholar 

  34. Y. Jeon, J. Chung, K. No, J. Electroceram. 4, 195 (2000)

    Article  Google Scholar 

  35. X. Lu, High-K Gate Dielectrics CMOS Technology (Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2012), pp. 471–499

    Book  Google Scholar 

  36. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  37. J.T. Dawley, R. Radspinner, B.J.J. Zelinski, D.R. Uhlmann, J. Sol Gel Sci. Technol. 20, 85 (2001)

    Article  Google Scholar 

  38. M. Vehkanaki, T. Hatanpaa, M. Kemell, M. Ritala, M. Leskela, Chem. Matter. 18, 3883 (2006)

    Article  Google Scholar 

  39. C. Long, W. Ren, L. Liu, Y. Xia, H. Fan (n.d.)

  40. S. Iakovlev, C.H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys. 97 (2005)

  41. A.S. Keiteb, E. Saion, A. Zakaria, N. Soltani, J. Nanomater. 2016 (2016)

  42. A. Hojabri, J. Theor. Appl. Phys. 10, 219–224 (2016)

    Article  ADS  Google Scholar 

  43. S.S. Kumar, E.J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, C.V. Ramana, J. Phys. Chem. C 117, 4194 (2013)

    Article  Google Scholar 

  44. S. Wha, C. Sung, J. Magn. Mater. 304, 772–774 (2006)

    Article  Google Scholar 

  45. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Bull. Mater. Sci. 41(4), 101 (2018)

    Article  ADS  Google Scholar 

  46. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Superlattices Microstruct. 121, 55–63 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The XRD characterization of the films (BFO and ZrO2) was done in CIR Lab, MNNIT Allahabad. The FESEM with EDS of thin films (BFO and ZrO2) was done in ACMS, IIT Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Rai, C. & Singh, S. Structural and electrical properties of Al/BiFeO3/ZrO2/n-Si structure for non-volatile memory application. Appl. Phys. A 126, 799 (2020). https://doi.org/10.1007/s00339-020-03978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03978-5

Keywords

Navigation