Skip to main content

Advertisement

Log in

Electrochemical characterization and biological applications of luminescent zirconia quantum dots

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Luminescent zirconia quantum dots (ZQDs) were prepared by wet leaf extract of Spinacia oleracea plant with varying ultrasonication treatment reaction time. The results of characterization studies on ZQDs revealed that particles are in monoclinic and tetragonal phase with the small spherical shape exhibiting blue–green and orange red emission properties. Electrochemical impedance and cyclic voltammetry studies were carried out, resulting in good electrocatalytic activity of ZQDs. Cellular mitochondrial activity was determined by MTT assay, anti-oxidant capability was determined using DPPH assay and in-vitro antibacterial activity studies were performed on Gram-negative E. coli bacteria and Gram-positive bacteria Bacillus subtilis for ZQDs. Biological studies on ZQDs revealed Ultrasonic 10 min (US-10) as a potential anti cancer agent against human cancer cell line (MCF-7) with an IC 50 value of 59.70 µg/mL, anti-oxidant agent with IC 50 value of 170 µg/mL and antibacterial agent showing good inhibition zones against E. coli and B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial. Biomaterials 20, 1–25 (1999)

    Article  Google Scholar 

  2. G.M. Whitesides, Nanoscience, nanotechnology and chemistry. Small 1, 172–179 (2005)

    Article  Google Scholar 

  3. A. Paul, Chemical durability of glasses; a thermodynamic approach. J. Mater. Sci. 12, 2246–2268 (1977)

    Article  ADS  Google Scholar 

  4. A.K. Khan, R. Rashid, G. Murtaza, A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery. J. Pharmaceut. Res. 13(7), 1169–1177 (2014)

    Google Scholar 

  5. L. Xiangqian, X. Huizhong, Z.-S. Chen, G. Chen, Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. (2011). https://doi.org/10.1155/2011/270974. (Article ID 270974)

    Article  Google Scholar 

  6. T. Sreethawong, S. Ngamsinlapasathian, S. Yoshikawa, Synthesis of crystalline mesoporous assembled ZrO2 nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity. Chem. Eng. J. 228, 256–262 (2013)

    Article  Google Scholar 

  7. J.R. Sohn, S.G. Ryu, Surface characterization of chromium oxide-zirconia catalyst. Langmuir 9, 126–131 (1993)

    Article  Google Scholar 

  8. E. Dudnik, Modern methods for hydrothermal synthesis of ZrO2-based nano crystalline powders. Powder Metall. Met. Ceram. 48, 238–248 (2009)

    Article  Google Scholar 

  9. R.R. Bhosale, A.S. Kulkarni, S.S. Gilda, N.H. Aloorkar, R.A. Osmani, B.R. Harkare, Innovative eco-friendly approaches for green synthesis of silver nanoparticles. Int. J. Pharmaceut. Sci. Nanotechnol. 7(1), 2328–2337 (2014)

    Google Scholar 

  10. V. Bansal, D. Rautaray, A. Ahmad, M. Sastry, Biosynthesis of zirconia nanoparticles using the ungus Fusarium oxysporum. J. Mater. Chem. 14, 3303–3305 (2004)

    Article  Google Scholar 

  11. M. Satishkumar, K. Sneha, Y.S. Yun, Green fabrication of zirconia nano-chains using novel Curcuma longa tuber extract. Mater. Lett. 98, 242–245 (2013)

    Article  Google Scholar 

  12. S. Balajia, B.K. Mandala, S. Ranjan, N. Dasguptab, R. Chidambaram, Nano-zirconia—evaluation of its antioxidant and anticancer activity. J. Photochem. Photobiol. B 170, 125–133 (2017)

    Article  Google Scholar 

  13. M. Kumerasan, V.K. Anand, K. Govindaraju, S. Tamilselvan, G.V. Kumar, Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria. Microb. Pathog. 124, 311–315 (2018)

    Article  Google Scholar 

  14. X. Vendrell, A.R. West, Electric properties of Yttria-stabilized Zirconia, YSZ single crystal, local AC and long range DC Conduction. J. Electrochem. Soc. 165, 966–975 (2018)

    Article  Google Scholar 

  15. D. Eder, R. Kramer, Impedance spectroscopy of reduced monoclinic zirconia. Phys. Chem. Chem. Phys. 8, 4476–4483 (2006)

    Article  Google Scholar 

  16. Y. Qiang, Q. Minghui, C. Xianfu, F. Yiqun, Ultrasound assisted synthesis of size—controlled aqueous colloids for the fabrication of nanoporous Zirconia membrane. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00337

    Article  Google Scholar 

  17. M.L. Andrade-Guel, L. Diaz-Jimenez, D.A. Cortes-Hernández, Ultrasound-assisted sol-gel synthesis of ZrO2. Ultrasonics Sonochem. 35, 514–517 (2017). https://doi.org/10.1016/j.ultsonch.2016.09.010

    Article  Google Scholar 

  18. T.M. Taghizadeh, M. Vatanparast, Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J. Colloid Interface Sci. 483, 1–10 (2016)

    Article  ADS  Google Scholar 

  19. D. Manoharan, A. Loganatham, V. Kurapati, J.V. Nesamony, Unique sharp photoluminescence of size-controlled sonochemically synthesized zirconia nanoparticles. Ultrason. Sonochem. 23, 174–184 (2015)

    Article  Google Scholar 

  20. K. Prasad, D. Pinjari, B.A. Pandit, S. Mhaske, Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature. Ultrason. Sonochem. 18(5), 1128–1137 (2011)

    Article  Google Scholar 

  21. G.D. Reddy, M. Noorjahan, A. Ratnamala, Novel visible-range luminescence of pristine nanozirconia phosphor using green fabrication techniques. Bull. Mater. Sci. 42, 34 (2019)

    Article  Google Scholar 

  22. A. Miri, M. Sarani, Silver nanoparticles: cytotoxic and apoptotic activity on HT-29 and A549 cell lines. J. New Develop. Chem. 4, 10 (2018)

    Google Scholar 

  23. A.A. Kajani, A.K. Bordbar, S.H.Z. Esfahani, A. Razmjou, Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Adv. 4, 61394–61403 (2014)

    Article  Google Scholar 

  24. S. Soren, S. Kumar, S. Mishra, P.K. Jena, S.K. Verma, P. Parhi, Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb. Pathog. 119, 145–151 (2018)

    Article  Google Scholar 

  25. K. Chokshi, I. Panch, T. Ghosh, C. Paliwal, R.M.A. Ghosh, S. Mishra, Green synthesis, haracterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv. 6, 72269–72274 (2016)

    Article  Google Scholar 

  26. Y. Kuthati, R.K. Kankala, S.X. Lin, C.F. Weng, C.H. Lee, pH-Triggered controllable release of silver–indole-3 acetic acid complexes from mesoporous silica nanoparticles (IBN-4) for effectively killing malignant bacteria. Mol. Pharm. 12, 2289–2304 (2015)

    Article  Google Scholar 

  27. J.B. Fathima, A. Pugazhendhi, R. Venis, Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb. Pathog. 110, 245–251 (2017)

    Article  Google Scholar 

  28. S. Gowri, R.R. Gandhi, M. Sundarajan, Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J. Mater. Sci. Technol. 30(8), 782–790 (2014)

    Article  Google Scholar 

  29. M. Imran, S. Riaz, I. Sanaullah, U. Khan, A.N. Sabri, S. Naseem, Microwave assisted synthesis and antimicrobial activity of Fe3O4-doped ZrO2 nanoparticles. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.057

    Article  Google Scholar 

  30. R.C. Gravie, The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238–1243 (1965)

    Article  Google Scholar 

  31. L. Kumari, W.Z. Li, Controlled hydrothermal synthesis of zirconium oxide nanostructures and their optical properties. Cryst. Growth Des. 9, 3874–3880 (2009)

    Article  Google Scholar 

  32. G.K. Sidhu, A.K. Kaushik, S. Rana, S. Bhansali, R. Kumar, Photoluminescence quenching of Zirconia nanoparticle by surface modification. Appl. Surf. Sci. 334, 216–221 (2015)

    Article  ADS  Google Scholar 

  33. A. Mftah, F.H. Alhassan, M.S. Al-Qubaisi, M.E. El Zowalaty, T.J. Webster, M. Sh-eldin, A. Rasedee, Y.H. Taufiq-Yap, S.S. Rashid, Physicochemical properties, cytotoxicity and antimicrobial activity of sulphated zirconia nanoparticles. Int. J. Nanomed. 10, 765–774 (2015)

    Article  Google Scholar 

  34. G. Bisht, S. Rayamajhi, ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine (Rij) 3, 9 (2016). https://doi.org/10.5772/63437

    Article  Google Scholar 

  35. P.V. Rao, D. Nallapan, K. Madhavi, S. Rahman, L.J. Wei, S.H. Gan, Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative Med. Cell. Longevity 15, 3685671 (2016)

    Google Scholar 

  36. N.E.A. El-Naggar, M.H. Hussein, A.A. El-Sawah, Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci. Rep. 7(2017), 10844 (2017). https://doi.org/10.1038/s41598-017-11121

    Article  ADS  Google Scholar 

  37. S. Paul, J.P. Saikia, S.K. Samdarshi, B.K. Konwar, Investigation of antioxidant property of iron oxide particlesby 1′-1′ diphenylpicryl-hydrazyle (DPPH) method. J. Magn. Magn. Mater. 321, 3621–3623 (2009)

    Article  ADS  Google Scholar 

  38. N. Pandiyan, B. Murugesan, J. Sonamuthu, S. Samayanan, S. Mahalingam, Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: enhancement of its bio-medical properties. J. Photochem. Photobiol. B. 178, 481–488 (2018)

    Article  Google Scholar 

  39. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6(8), 1794–1807 (2006)

    Article  ADS  Google Scholar 

  40. H. Manjunatha, D.H. Nagaraju, G.S. Suresh, T.V. Venkatesh, Detection of uric acid in the presence of dopamine and high concentration of ascorbic acid using PDDA modified graphite electrode. Electroanalysis 21(20), 2198–2206 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to DST-Inspire (AORC) Fellowship for providing financial assistance. Also Authors acknowledge Prof. K. Girija, Department of Chemistry, Palamuru University for Encouragement and National Dong Hwa University, Taiwan for providing FESEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Noorjahan or K. Chandra Babu Naidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.D., Noorjahan, M., Ratnamala, A. et al. Electrochemical characterization and biological applications of luminescent zirconia quantum dots. Appl. Phys. A 126, 745 (2020). https://doi.org/10.1007/s00339-020-03942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03942-3

Keywords

Navigation