Skip to main content
Log in

Photocatalytic and Antibacterial Activity of Fluorescent CdS Quantum Dots Synthesized Using Aqueous Extract of Cyanobacterium Nostoc carneum

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

A low-cost, eco-friendly green strategy has been developed for the synthesis of fluorescent cadmium sulfide quantum dots (CdS QDs) using a cyanobacterium, Nostoc carneum. The as-synthesized CdS quantum dots were characterized using UV–visible (UV–Vis) spectroscopy, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Photoluminescence (PL) spectroscopy, and Fourier Transform Infrared Spectroscopy (FT-IR). The UV–Vis spectrum showed the absorption edge in the range 410–475 nm with a band gap energy of 2.68 eV. The photoluminescence spectrum displayed a broad emission band spread over 450–650 nm when excited at 425 nm. The TEM and FE-SEM analysis confirmed the formation of quantum dots with spherical morphology in the 2–6 nm size range. The XRD analysis showed intense peaks that correspond to the crystalline nature of CdS QDs. The FT-IR spectroscopy provided clear evidence of the presence of biomolecules responsible for the stabilization of the CdS QDs. The quantum dots showed efficient catalytic activity for degradation of water-soluble toxic dye, methyl orange (MO), and rhodamine B (RhB) with a high conversion yield (~ 90%). The photocatalytic degradation followed pseudo-first-order kinetics with rate constant at 0.02896 and 0.02846 min−1, respectively. Significant antibacterial activity of the CdS QDs against four selected pathogenic bacterial strains has also been observed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Huang, P., Jiang, Q., Yu, P., Yang, L., & Mao, L. (2013). Alkaline post-treatment of Cd(II)-glutathione coordination polymers: Toward green synthesis of water-soluble and cytocompatible CdS quantum dots with tunable optical properties. ACS Applied Materials & Interfaces, 5(11), 5239–5246. https://doi.org/10.1021/am401082n

    Article  Google Scholar 

  2. Pradhan, N., & Sarma, D. D. (2011). Advances in light-emitting doped semiconductor nanocrystals. Journal of Physical Chemistry Letters, 2, 2818–2826. https://doi.org/10.1021/jz201132s

    Article  Google Scholar 

  3. Valizadeh, A., Mikaeili, H., Samiei, M., Farkhani, S. M., Zarghami, N., Kouhi, M., Akbarzadeh, A., & Davaran, S. (2012). Quantum dots: Synthesis, bioapplications, and toxicity. Nanoscale Research Letters, 7, 480–493. https://doi.org/10.1186/1556-276X-7-480

    Article  Google Scholar 

  4. Bederak, D., Balazs, D. M., Sukharevska, N. V., Shulga, A. G., Abdu-Aguye, M., Dirin, D. N., Kovalenko, M. V., & Loi, M. A. (2018). Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACS Applied Nano Materials, 1, 6882–6889. https://doi.org/10.1021/acsanm.8b01696

    Article  Google Scholar 

  5. Zhou, S., Ma, Y., Zhang, X., Lan, W., Yu, X., Xie, B., Wang, K., & Luo, X. (2020). White-light-emitting diodes from directional heat-conducting hexagonal boron nitride quantum dots. ACS Applied Nano Materials, 3, 814–819. https://doi.org/10.1021/acsanm.9b02321

    Article  Google Scholar 

  6. Nann, T., & Skinner, W. M. (2011). Quantum dots for electro-optic devices. ACS Nano, 5, 5291–5295. https://doi.org/10.1021/nn2022974

    Article  Google Scholar 

  7. Santiago, S. R. M. S., Chang, C. H., Lin, T. N., Yuan, C. T., & Shen, J. L. (2019). Diethylenetriamine-doped graphene oxide quantum dots with tunable photoluminescence for optoelectronic applications. ACS Appl Nano Materials, 2, 3925–3933. https://doi.org/10.1021/acsanm.9b00811

    Article  Google Scholar 

  8. Yuan, Y., Jin, N., Saghy, P., Dube, L., Zhu, H., & Chen, O. (2021). Quantum dot photocatalysts for organic transformations. Journal of Physical Chemistry Letters, 12(30), 7180–7193. https://doi.org/10.1021/acs.jpclett.1c01717

    Article  Google Scholar 

  9. Reshak, A. H. (2017). Quantum dots in photocatalytic applications: Efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizer. Physical Chemistry Chemical Physics: PCCP, 19, 24915–24927. https://doi.org/10.1039/C7CP05312F

    Article  Google Scholar 

  10. Paliwal, A., Singh, S. V., Sharma, A., Sugathan, A., Liu, S. W., Biring, S., & Pal, B. N. (2018). Microwave-polyol synthesis of sub-10-nm PbS nanocrystals for metal oxide/nanocrystal heterojunction photodetectors. ACS Applied Nano Materials, 1, 6063–6072. https://doi.org/10.1021/acsanm.8b01194

    Article  Google Scholar 

  11. Hafiz, S. B., Scimeca, M. R., Zhao, P., Paredes, I. J., Sahu, A., & Ko, D. K. (2019). Silver selenide colloidal quantum dots for mid-wavelength infrared photodetection. ACS Applied Nano Materials, 2, 1631–1636. https://doi.org/10.1021/acsanm.9b00069

    Article  Google Scholar 

  12. Asgari, M., Coquillat, D., Menichetti, G., Zannier, V., Diakonova, N., Knap, W., Sorba, L., Viti, L., & Vitiello, M. S. (2021). Quantum-dot single-electron transistors as thermoelectric quantum detectors at terahertz frequencies. Nano Letters, 21(20), 8587–8594. https://doi.org/10.1021/acs.nanolett.1c02022

    Article  Google Scholar 

  13. Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., Zhang, X., Tai, R., & Fan, C. (2012). The cytotoxicity of cadmium-based quantum dots. Biomaterials, 33, 1238–1244. https://doi.org/10.1016/j.biomaterials.2011.10.070

    Article  Google Scholar 

  14. Liu, W., Zhang, S., Wang, L., Qu, C., Zhang, C., Hong, L., Yuan, L., Huang, Z., Wang, Z., Liu, S., & Jiang, G. (2011). CdSe quantum dot (QD)-induced morphological and functional impairments to liver in mice. PLoS ONE, 6, 24406–24412. https://doi.org/10.1371/journal.pone.0024406

    Article  Google Scholar 

  15. Shivaji, K., Mani, S., Ponmurugan, P., De Castro, C. S., Davies, M. L., Balasubramanian, M. G., & Pitchaimuthu, S. (2018). Green synthesis derived CdS quantum dots using tea leaf extract: Antimicrobial, bioimaging and therapeutic applications in lung cancer cell. ACS Applied Nano Materials, 1(4), 1683–1693. https://doi.org/10.1021/acsanm.8b00147

    Article  Google Scholar 

  16. Badıllı, U., Mollarasouli, F., Bakirhan, N. K., Ozkan, Y., & Ozkan, S. A. (2020). Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC - Trends in Analytical Chemistry, 131, 116013–116024. https://doi.org/10.1016/j.trac.2020.116013

    Article  Google Scholar 

  17. Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., Fang, D., Sun, H., Fan, L., Han, M., Liu, C., & Yang, S. (2012). Facile synthesis of water soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 22, 7461–7467. https://doi.org/10.1039/C2JM16835A

    Article  Google Scholar 

  18. Zhou, X., Zhang, Y., Wang, C., Wu, X., Yang, Y., Zheng, B., Wu, H., Guo, S., & Zhang, J. (2012). Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano, 6, 6592–6599. https://doi.org/10.1021/nn301629v

    Article  Google Scholar 

  19. Martynenko, I. V., Litvin, A. P., Milton, F. P., Baranov, A. V., Fedorov, A. V., & Gunko, Y. K. (2017). Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B, 5, 6701–6727. https://doi.org/10.1039/C7TB01425B

    Article  Google Scholar 

  20. Rosenthal, S. J., Chang, J. C., Kovtun, O., McBride, J. R., & Tomlinson, I. D. (2011). Biocompatible quantum dots for biological applications. Chemistry & Biology, 18(1), 10–24. https://doi.org/10.1016/j.chembiol.2010.11.013

    Article  Google Scholar 

  21. Onoshima, D., Yukawa, H., & Baba, Y. (2015). Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews, 95, 2–14. https://doi.org/10.1016/j.addr.2015.08.004

    Article  Google Scholar 

  22. Maybodi, A. S., & Maleki, M. R. S. (2016). In-situ synthesis of high stable CdS quantum dots and their application for photocatalytic degradation of dyes. Spectrochimica Acta A Molecular and Biomolecular Spectroscopy, 152, 156–164. https://doi.org/10.1016/j.saa.2015.07.052

    Article  Google Scholar 

  23. Mnasri, G., Mansouri, S., Yalçin, M., Mir, L. E., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2020). Characterization and study of CdS quantum dots solar cells based on Graphene-TiO2 nanocomposite photoanode. Results Physics, 18, 103253–103261. https://doi.org/10.1016/j.rinp.2020.103253

    Article  Google Scholar 

  24. Bansal, A. K., Antolini, F., Zhang, S., Stroea, L., Ortolani, L., Lanzi, M., Serra, E., Allard, S., Scherf, U., & Samuel, I. D. W. (2016). Highly luminescent colloidal CdS quantum dots with efficient near-infrared electroluminescence in light-emitting diodes. Journal of Physical Chemistry C, 120(3), 1871–1880. https://doi.org/10.1021/acs.jpcc.5b09109

    Article  Google Scholar 

  25. Sonker, R. K., Shastri, R., & Johari, R. (2021). Superficial synthesis of CdS quantum dots for an efficient perovskite-sensitized solar cell. Energy & Fuels, 35(9), 8430–8435. https://doi.org/10.1021/acs.energyfuels.1c00629

    Article  Google Scholar 

  26. Munishwar, S. R., Pawar, P. P., Janbandhu, S. Y., & Gedam, R. S. (2020). Highly stable CdS quantum dots embedded in glasses and its application for inhibition of bacterial colonies. Optical Materials, 99, 109590–109597. https://doi.org/10.1016/j.optmat.2019.109590

    Article  Google Scholar 

  27. Dumbrava, A., Badea, C., Prodan, G., & Ciupin, V. (2010). Synthesis and characterization of cadmium sulfide obtained at room temperature. Chalcogenide Letters, 7(2), 111–118.

    Google Scholar 

  28. Chen, R., Han, B., Yang, L., Yang, Y., Xu, Y., & Mai, Y. (2016). Controllable synthesis and characterization of CdS quantum dots by a microemulsion-mediated hydrothermal method. Journal of Luminescence, 172, 197–200. https://doi.org/10.1016/j.jlumin.2015.12.006

    Article  Google Scholar 

  29. Entezari, M. H., & Ghows, N. (2011). Micro-emulsion under ultrasound facilitates the fast synthesis of quantum dots of CdS at low temperature. Ultrasonics Sonochemistry, 18, 127–134. https://doi.org/10.1016/j.ultsonch.2010.04.001

    Article  Google Scholar 

  30. Arellano, I. H. J., Mangadlao, J., Ramiro, I. B., & Suazo, K. F. (2010). 3-component low temperature solvothermal synthesis of colloidal cadmium sulfide quantum dots. Materials Letters, 64, 785–788. https://doi.org/10.1016/j.matlet.2010.01.021

    Article  Google Scholar 

  31. Algethami, F. K., Saidi, I., Jannet, H. B., Khairy, M., Abdulkhair, B. Y., Al-Ghamdi, Y. O., & Abdelhamid, H. N. (2022). Chitosan-CdS quantum dots biohybrid for highly selective interaction with copper(II) ions. ACS Omega, 7(24), 21014–21024. https://doi.org/10.1021/acsomega.2c01793

    Article  Google Scholar 

  32. Shkir, Md., Khan, Z. R., Chandekar, K. V., Alshahrani, T., Kumar, A., & Alfaify, S. (2020). A facile microwave synthesis of Cr-doped CdS QDs and investigation of their physical properties for optoelectronic applications. Applied Nanoscience, 10, 3973–3985. https://doi.org/10.1007/s13204-020-01505-9

    Article  Google Scholar 

  33. Butova, V. V., Budnyk, A. P., Lastovina, T. A., Kravtsova, A. N., & Soldatov, A. V. (2017). Rapid microwave synthesis of CdS quantum dots stabilized with 4,4′-bipyridine and dioctyl sodium sulfosuccinate. Mendeleev Communications, 27, 313–314. https://doi.org/10.1016/j.mencom.2017.05.033

    Article  Google Scholar 

  34. Hamid, Z. A., Hassan, H. B., Hassan, M. A., Mourad, M. H., & Anwar, S. (2019). Effect of cadmium sulfide quantum dots prepared by chemical bath deposition technique on the performance of solar cell. Egypt J Chem, 62(9), 1–11. https://doi.org/10.21608/ejchem.2019.6509.1547

    Article  Google Scholar 

  35. Vázquez, E. S., Moreno, M. L. L., & Ruiz, S. J. B. (2022). Synthesis of CdS and TGA-capped CdS quantum dots from different Cd precursors. MRS Adv, 7, 235–238. https://doi.org/10.1557/s43580-021-00143-9

    Article  Google Scholar 

  36. Mi, C., Wang, Y., Zhang, J., Huang, H., Xu, L., Wang, S., Fang, X., Fang, J., Mao, C., & Xu, S. (2011). Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. Journal of Biotechnology, 153, 125–132. https://doi.org/10.1016/j.jbiotec.2011.03.014

    Article  Google Scholar 

  37. Ulloa, G., Collao, B., Araneda, M., Escobar, B., Álvarez, S., Bravo, D., & Pérez-Donoso, J. M. (2016). Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH. Enzym Microb Technol, 95, 217–224. https://doi.org/10.1016/j.enzmictec.2016.09.005

    Article  Google Scholar 

  38. Borovaya, M. N., Pirko, Y., Krupodorova, T., Naumenko, A., Blume, Y., & Yemets, A. (2015). Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm. Biotechnol Biotechnol Equip, 29(6), 1156–1163. https://doi.org/10.1080/13102818.2015.1064264

    Article  Google Scholar 

  39. Chen, G., Yi, B., Zeng, G., Niu, Q., Yan, M., Chen, A., Du, J., Huang, J., & Zhang, Q. (2014). Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids and Surfaces. B, Biointerfaces, 117, 199–205. https://doi.org/10.1016/j.colsurfb.2014.02.027

    Article  Google Scholar 

  40. Borovaya, M. N., Naumenko, A. P., Matvieieva, N. A., Blume, Y. B., & Yemets, A. I. (2014). Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Research Letters, 9, 1–7. https://doi.org/10.1186/1556-276X-9-686

    Article  Google Scholar 

  41. Borovaya, M. N., Burlaka, O. M., Naumenko, A. P., Blume, Y. B., & Yemets, A. I. (2016). Extracellular synthesis of luminescent CdS quantum dots using plant cell culture. Nanoscale Research Letters, 11, 1–8. https://doi.org/10.1186/s11671-016-1314-z

    Article  Google Scholar 

  42. Kaviya, S. (2018). Size dependent ratiometric detection of Pb (II) ions in aqueous solution by light emitting biogenic CdS NPs. Journal of Luminescence, 195, 209–215. https://doi.org/10.1016/J.JLUMIN.2017.11.031

    Article  Google Scholar 

  43. Bhuvaneswari, G., & Radjarejesri, S. (2015). Green synthesis and characterization of CdS quantum dots. International Journal of ChemTech Research, 8(5), 104–108.

    Google Scholar 

  44. Lakshmipathy, R., Sarada, N. C., Chidambaram, K., & Pasha, S. K. (2015). One-step, low temperature fabrication of CdS quantum dots by watermelon rind: A green approach. International Journal of Nanomedicine, 10, 183–188. https://doi.org/10.2147/IJN.S79988

    Article  Google Scholar 

  45. Kandasamy, K., Venkatesh, M., Khadar, Y. A. S., & Rajasingh, P. (2020). One-pot green synthesis of CdS quantum dots using Opuntiaficus-indicafruit sap. Materials Today: Proceedings, 26, 3503–3506. https://doi.org/10.1016/j.matpr.2019.06.003

    Article  Google Scholar 

  46. Wang, S., Yu, J., Zhao, P., Guo, S., & Song, H. (2021). One-step synthesis of water-soluble CdS quantum dots for silver-ion detection. ACS Omega, 6, 7139–7146. https://doi.org/10.1021/acsomega.1c00162

    Article  Google Scholar 

  47. Prasad, K. S., Amin, T., Katuva, S., Kumari, M., & Selvaraj, K. (2017). Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity. Arabian Journal of Chemistry, 10, 3929–3935. https://doi.org/10.1016/j.arabjc.2014.05.033

    Article  Google Scholar 

  48. Ali, D. M., Gopinath, V., Rameshbabu, N., & Thajuddin, N. (2012). Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Materials Letters, 74, 8–11. https://doi.org/10.1016/j.matlet.2012.01.026

    Article  Google Scholar 

  49. Hamouda, R. A., Hussein, M. H., Abo-elmagd, R. A., & Bawazir, S. S. (2019). Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Science and Reports, 9, 13071–21391. https://doi.org/10.1038/s41598-019-49444-y

    Article  Google Scholar 

  50. Hamida, R. S., Abdelmeguid, N. E., Ali, M. A., Bin-Meferi, M. M., & Khalil, M. I. (2020). Synthesis of silver nanoparticles using a novel cyanobacteria Desertifilum sp. extract: Their antibacterial and cytotoxicity effects. International Journal of Nanomedicine, 15, 49–63. https://doi.org/10.2147/IJN.S238575

    Article  Google Scholar 

  51. Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold (III)-chloride complexes. Langmuir, 22, 2780–2787. https://doi.org/10.1021/la052652c

    Article  Google Scholar 

  52. Lengke, M. F., Fleet, M. E., & Southam, G. (2006). Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir, 22, 7318–7323. https://doi.org/10.1021/la060873s

    Article  Google Scholar 

  53. Borah, D., Das, N., Sarmah, P., Ghosh, K., Chandel, M., Rout, J., Pandey, P., Ghosh, N. N., & Bhattacharjee, C. R. (2023). A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity. Mater Today Commun, 34, 105110. https://doi.org/10.1016/j.mtcomm.2022.105110

    Article  Google Scholar 

  54. Brandl, F., Bertrand, N., Lima, E. M., & Langer, R. (2015). Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nature Communications, 6, 7765. https://doi.org/10.1038/ncomms8765

    Article  Google Scholar 

  55. Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences, 9, 2489. https://doi.org/10.3390/app9122489

    Article  Google Scholar 

  56. Mao, J., Chen, X. M., & Du, X. W. (2016). Facile synthesis of three dimensional CdS nanoflowers with high photocatalytic performance. Journal of Alloys and Compounds, 656, 972–977. https://doi.org/10.1016/j.jallcom.2015.10.064

    Article  Google Scholar 

  57. Desikachary TV (1959) Cyanophyta, Indian Council of Agricultural Research, New Delhi.

  58. Rao, M. D., & Pennathur, G. (2017). Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Materials Research Bulletin, 85, 64–73. https://doi.org/10.1016/j.materresbull.2016.08.049

    Article  Google Scholar 

  59. Singh, R., Basu, S., & Pal, B. (2017). Ag+ and Cu2+ doped CdS nanorods with tunable band structure and superior photocatalytic activity under sunlight. Materials Research Bulletin, 94, 279–286. https://doi.org/10.1016/j.materresbull.2017.05.032

    Article  Google Scholar 

  60. Borah, D., Saikia, P., Sarmah, P., Rout, J., Gogoi, D., Ghosh, N. N., & Bhattacharjee, C. R. (2022). Composition controllable alga-mediated green synthesis of covellite CuS nanostructure: An efficient photocatalyst for degradation of toxic dye. Inorganic Chemistry Communications, 138, 109608–109617. https://doi.org/10.1016/j.inoche.2022.109608

    Article  Google Scholar 

  61. Carrot, G., Scholz, S. M., Plummer, C. J. G., Hilborn, J. G., & Hedrick, J. L. (1999). Synthesis and characterization of nanoscopic entities based on poly (caprolactone)-grafted cadmium sulfide nanoparticles. Chemistry of Materials, 11, 3571–3577. https://doi.org/10.1021/cm990362+

    Article  Google Scholar 

  62. Gupta, V. K., Pathania, D., Asif, M., & Sharma, G. (2014). Liquid phase synthesis of pectin cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity. Journal of Molecular Liquids, 196, 107–112. https://doi.org/10.1016/j.molliq.2014.03.021

    Article  Google Scholar 

  63. Bai, H. J., Zhang, Z. M., Guo, Y., & Yang, G. E. (2009). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces. B, Biointerfaces, 70, 142–146. https://doi.org/10.1016/j.colsurfb.2008.12.025

    Article  Google Scholar 

  64. Cullity, B. D., (1978). Elements of X-ray Diffraction, 2nd edn. Addison-Wesley. Reading.

  65. Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghosh NN, Bhattacharjee CR (2020) Alga-mediated facile green synthesis of silver nanoparticles:photophysical, catalytic and antibacterial activity. Appl Organomet Chem 34 (5). https://doi.org/10.1002/aoc.5597.

  66. Soshnikova, V., Kim, Y. J., Singh, P., Huo, Y., Markus, J., Ahn, S., Castro-Aceituno, V., Kang, J., Chokkalingam, M., Mathiyalagan, R., & Yang, D. C. (2017). Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 108–117. https://doi.org/10.1080/21691401.2017.1296849

    Article  Google Scholar 

  67. Jiang, J., Oberdörster, G., & Biswas, P. (2009). Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research, 11, 77–89. https://doi.org/10.1007/s11051-008-9446-4

    Article  Google Scholar 

  68. Aboulaich, A., Billaud, D., Abyan, M., Balan, L., Gaumet, J. J., Medjadhi, G., Ghanbaja, J., & Schneider, R. (2012). One-pot non injection route to CdS quantum dots via hydrothermal synthesis. ACS Applied Materials & Interfaces, 4, 2561–2569. https://doi.org/10.1021/am300232z

    Article  Google Scholar 

  69. Ahmed, A., Usman, M., Yu, B., Ding, X., Peng, Q., Shen, Y., & Cong, H. (2020). Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. Journal of Photochemistry and Photobiology B, 202, 111682. https://doi.org/10.1016/j.jphotobiol.2019.111682

    Article  Google Scholar 

  70. Mehta, M., Sharma, M., Pathania, K., Jena, P. K., & Bhushan, I. (2021). Degradation of synthetic dyes using nanoparticles: A mini-review. Environmental Science and Pollution Research, 28, 49434–49446. https://doi.org/10.1007/s11356-021-15470-5

    Article  Google Scholar 

  71. Ajmal, A., Majeed, I., Malik, R. N., Idrissc, H., & Nadeem, M. A. (2014). Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 4, 37003–37026. https://doi.org/10.1039/C4RA06658H

    Article  Google Scholar 

  72. Hussain, W., Malik, H., Bahadur, A., Hussain, R. A., Shoaib, M., Iqbal, Sh., Hussain, H., Green, I. R., Badshaha, A., & Li, H. (2018). Synthesis and characterization of CdS photocatalyst with different morphologies: Visible light activated dyes degradation study. Kinetics and Catalysis, 59(6), 710–719. https://doi.org/10.1134/S0023158418060058

    Article  Google Scholar 

  73. Alhaji, N. M. I., Nathiya, D., Kaviyarasu, K., Meshram, M., & Ayeshamariam, A. (2019). A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf. Interfaces, 17, 100375–100381. https://doi.org/10.1016/j.surfin.2019.100375

    Article  Google Scholar 

  74. Jyoti, K., & Singh, A. (2016). Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. Journal, Genetic Engineering & Biotechnology, 14, 311–317. https://doi.org/10.1016/j.jgeb.2016.09.005

    Article  Google Scholar 

  75. Kumar, P., Govindaraju, M., Senthamilselvi, S., & Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids and Surfaces B, 103, 658–661. https://doi.org/10.1016/j.colsurfb.2012.11.022

    Article  Google Scholar 

  76. Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 11621–11628. https://doi.org/10.1016/j.jphotobiol.2019.111621

    Article  Google Scholar 

  77. Ganesh, R. S., Durgadevi, E., Navaneethan, M., Sharma, S. K., Binitha, H. S., Ponnusamy, S., Muthamizhchelvan, C., & Hayakawa, Y. (2017). Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chemical Physics Letters, 684(16), 126–134. https://doi.org/10.1016/j.cplett.2017.06.021

    Article  Google Scholar 

  78. Joseph, S., & Mathew, B. (2015). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. Journal of Molecular Liquids, 204, 184–191. https://doi.org/10.1016/j.molliq.2015.01.027

    Article  Google Scholar 

  79. Subash, M., Chandrasekar, M., Panimalar, S., Inmozhi, C., Parasuraman, K., Uthrakumar, R., & Kaviyarasu, K. (2023). Pseudo-first kinetics model of copper doping on the structural, magnetic, and photocatalytic activity of magnesium oxide nanoparticles for energy application. Biomass Convers. Biorefin., 13, 3427–3437. https://doi.org/10.1007/s13399-022-02993-1

    Article  Google Scholar 

  80. Najim, A. S., Naeem, H. S., Alabboodi, K. O., Hasbullah, S. A., Hasan, H. A., Holi, A. M., Al-Zahrani, A. A., Sopian, K., Bais, B., Majid, HSh., & Sultan, A. J. (2022). New systematic study approach of green synthesis CdS thin film via Salvia dye. Science and Reports, 12, 12521. https://doi.org/10.1038/s41598-022-16733-y

    Article  Google Scholar 

  81. Senasu, T., & Nanan, S. (2017). Photocatalytic performance of CdS nanomaterials for photodegradation of organic azo dyes under artificial visible light and natural solar light irradiation. Journal of Materials Science: Materials in Electronics, 28, 17421–17441. https://doi.org/10.1007/s10854-017-7676-x

    Article  Google Scholar 

  82. Ganesh, R. S., Sharma, S. K., Durgadevi, E., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., & Hayakawa, K. D. Y. (2017). Growth, microstructure, structural and optical properties of PVP-capped CdS nanoflowers for efficient photocatalytic activity of Rhodamine B. Materials Research Bulletin, 94, 190–198. https://doi.org/10.1016/j.materresbull.2017.05.059

    Article  Google Scholar 

  83. Li, X., Hu, C., Wang, X., & Xi, Y. (2012). Photocatalytic activity of CdS nanoparticles synthesized by a facile composite molten salt method. Applied Surface Science, 258, 4370–4376. https://doi.org/10.1016/j.apsusc.2011.12.116

    Article  Google Scholar 

  84. Hao, Q., Xu, J., Zhuang, X., Zhang, Q., Wan, Q., Pan, H., Zhu, X., & Pan, A. (2013). Template-free synthesis and photocatalytic activity of CdS nanorings. Materials Letters, 100, 141–144. https://doi.org/10.1016/j.matlet.2013.02.091

    Article  Google Scholar 

  85. Chen, F., Cao, Y., Jian, D., & Niu, X. (2013). Facile synthesis of CdS nanoparticles photocatalyst with high performance. Ceramics International, 39(2), 1511–1517. https://doi.org/10.1016/j.ceramint.2012.07.098

    Article  Google Scholar 

  86. Deng, C., & Tian, X. (2013). Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting. Materials Research Bulletin, 48(10), 4344–4350. https://doi.org/10.1016/j.materresbull.2013.07.019

    Article  MathSciNet  Google Scholar 

  87. Yu, Z., Qu, F., & Wu, X. (2014). Dendritic CdS assemblies for removal of organic dye molecules. Dalton Transactions, 43(12), 4847–4853. https://doi.org/10.1039/C3DT53256A

    Article  Google Scholar 

  88. Ullah, H., Viglašová, E., & Galamboš, M. (2021). Visible light-driven photocatalytic Rhodamine B degradation using CdS nanorods. Processes, 9, 263. https://doi.org/10.3390/pr9020263

    Article  Google Scholar 

  89. Dey, P. C., & Das, R. (2020). Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochim Acta A: Mol. Biomol Spectrosc, 231, 118122. https://doi.org/10.1016/j.saa.2020.118122

    Article  Google Scholar 

  90. Qin, S., Liu, Y., Zhou, Y., Chai, T., & Guo, J. (2017). Synthesis and photochemical performance of CdS nanoparticles photocatalysts for photodegradation of organic dye. Journal of Materials Science: Materials in Electronics, 28, 7609–7614. https://doi.org/10.1007/s10854-017-6453-1

    Article  Google Scholar 

  91. Ayodhya, D., Venkatesham, M., Kumari, A. S., Reddy, G. B., & Veerabhadram, G. (2015). One-pot sonochemical synthesis of CdS nanoparticles: Photocatalytic and electrical properties. International Journal of Industrial Chemistry, 6, 261–271. https://doi.org/10.1007/s40090-015-0047-7

    Article  Google Scholar 

  92. Zhang, L., Cheng, Z., Wang, D., & Li, J. (2015). Preparation of popcorn-shaped CdS nanoparticles by hydrothermal method and their potent photocatalytic degradation efficiency. Materials Letters, 158, 439–441. https://doi.org/10.1016/j.matlet.2015.06.042

    Article  Google Scholar 

  93. Sajid, M. M., Shad, N. A., Javed, Y., Khan, S. B., Zhang, Z., Amin, N., & Zhaia, H. (2020). Preparation and characterization of Vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surface Interfaces, 19, 100502–100510. https://doi.org/10.1016/j.surfin.2020.100502

    Article  Google Scholar 

  94. Hao, H., & Lang, X. (2019). Metal sulfide photocatalysis: Visible-light-induced organic transformations. ChemCatChem, 11(5), 1378–1393. https://doi.org/10.1002/cctc.201801773

    Article  Google Scholar 

  95. Djurišić, A. B., Leung, Y. H., & Ng, A. M. C. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4), 400–410. https://doi.org/10.1039/C4MH00031E

    Article  Google Scholar 

  96. Vanaja, M., & Annadurai, G. (2012). Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3, 217–223. https://doi.org/10.1007/s13204-012-0121-9

    Article  Google Scholar 

  97. Ali, D. M., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B, 85(2), 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009

    Article  Google Scholar 

  98. Alsaggaf Md S, Elbaz AF, Badawy SE, Moussa SH (2020) Anticancer and antibacterial activity of cadmium sulfide nanoparticles by Aspergillus niger. Adv Polymer Technol Article ID 4909054. https://doi.org/10.1155/2020/4909054.

  99. Zhang, H., & Chen, G. (2009). Potent antimicrobial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environmental Science & Technology, 43(8), 2905–2910. https://doi.org/10.1021/es803450f

    Article  Google Scholar 

  100. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Jobitha, G. G., Vanaja, M., & Annadurai, G. (2013). Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila. Advanced Nano Research, 1(2), 83–91. https://doi.org/10.1155/2020/4909054

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical and Instrumental Facility (SAIF), North-Eastern Hill University, Shillong, India, for TEM-EDX study.

Funding

D. Borah acknowledges financial support from Assam University under the aegis of University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Contributions

Debasish Borah: conceptualization, methodology, investigation, and writing of original draft. Puja Saikia: investigation and writing of original draft. Pampi Sarmah and Jayashree Rout: resources and formal analysis. Debika Gogoi and Narendra Nath Ghosh: formal analysis. Ankita Das and Piyush Pandey: investigation. Chira R. Bhattacharjee: conceptualization, supervision, and writing of original draft.

Corresponding author

Correspondence to Chira R. Bhattacharjee.

Ethics declarations

Ethics approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Consent to participate

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, D., Saikia, P., Sarmah, P. et al. Photocatalytic and Antibacterial Activity of Fluorescent CdS Quantum Dots Synthesized Using Aqueous Extract of Cyanobacterium Nostoc carneum. BioNanoSci. 13, 650–666 (2023). https://doi.org/10.1007/s12668-023-01115-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-023-01115-z

Keywords

Navigation