Skip to main content
Log in

Influence of Al2O3 on the low-field magnetoresistance of sol–gel grown La0.67Ca0.33MnO3:Al2O3 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low-field magnetoresistance (LFMR) is required by the high-efficiency magnetic devices and it can be achieved by introducing a secondary insulating phase which acts as the artificial barrier layer in manganite composite. However, this will induce a higher resistivity in the composites. In this work, (1 − x) La0.67Ca0.33MnO3 (LCMO):x Al2O3 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) composites have been prepared by the Pechini sol–gel method. Their structural, magnetic, electrical, and magneto-transport properties were systematically studied to determine the relationship between the LFMR and the concentration of Al2O3. X-ray diffraction (XRD) pattern indicates that LCMO and Al2O3 coexisted in the composites, indicating that Al2O3 is segregated outside the LCMO grains. Pure LCMO and its composites behaved as a paramagnetic state in room temperature. The TMI value has been suppressed in composites resulting from the weak connectivity between grains. The enhancement of LFMR can be observed in the broad range of temperatures (80–240 K) for all samples. More interestingly, a slight reduction of LFMR has been demonstrated by the composite samples. The spin-polarised tunnelling that is responsible for LFMR in composites of this work might be dominated by the nanosized LCMO or restricted by the thick boundary layers of Al2O3 phase. This is a significant finding to the existing works of LCMO:Al2O3 composites, as Al2O3 has improved the LFMR in composites from the available literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  2. T. Wang, X. Chen, F. Wang, W. Shi, Phys. B 405, 3088 (2010)

    Article  ADS  Google Scholar 

  3. J. Li, Q. Chen, S.A. Yang, K. Yan, H. Zhang, X. Liu, J. Alloys Compd. 790, 240 (2019)

    Article  Google Scholar 

  4. P.T. Phong, N.V. Khiem, N.V. Dai, D.H. Manh, L.V. Hong, N.X. Phuc, Mater. Lett. 63, 353 (2009)

    Article  Google Scholar 

  5. H. Hwang, S. Cheong, N. Ong, A.B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996)

    Article  ADS  Google Scholar 

  6. T.D. Thanh, P.T. Phong, N.V. Dai, D.H. Manh, N.V. Khiem, L.V. Hong, N.X. Phuc, J. Magn. Magn. Mater. 323, 179 (2011)

    Article  ADS  Google Scholar 

  7. K. Navin, R. Kurchania, J. Magn. Magn. Mater. 448, 228 (2018)

    Article  ADS  Google Scholar 

  8. Z. Zi, Y. Fu, Q. Liu, J. Dai, Y. Sun, J. Magn. Magn. Mater. 324, 1117 (2012)

    Article  ADS  Google Scholar 

  9. M.A. Dar, M. Malla, J. Solanki, D. Varshney, in AIP Conference Proceedings (AIP Publishing, 2017), p. 140013.

  10. M.A. Dar, D. Varshney, Solid State Commun. 224, 24 (2015)

    Article  ADS  Google Scholar 

  11. Y.-H. Liu, B.-X. Huang, R.-Z. Zhang, X.-B. Yuan, C.-J. Wang, L.-M. Mei, J. Magn. Magn. Mater. 269, 398 (2004)

    Article  ADS  Google Scholar 

  12. L. Hueso, J. Rivas, F. Rivadulla, M. López-Quintela, J. Appl. Phys. 89, 1746 (2001)

    Article  ADS  Google Scholar 

  13. T.P. Pham, H.N. Luu, H.M. Do, D.T. Tran, X.P. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 025003 (2011)

    Article  ADS  Google Scholar 

  14. J. Mera, M. Mera, C. Cordoba, O. Paredes, O. Morán, J. Supercond. Novel Magn. 26, 2553 (2013)

    Article  Google Scholar 

  15. P.K. Yap, A.H. Shaari, H. Baqiah, C.S. Kien, J. Hassan, Sains Malaysiana 48, 369 (2019)

    Article  Google Scholar 

  16. A. Mali, A. Ataie, Ceram. Int. 30, 1979 (2004)

    Article  Google Scholar 

  17. N. Amri, M. Nasri, M. Triki, E. Dhahri, Phase Transit. 92, 52 (2019)

    Article  Google Scholar 

  18. U. Chand, K. Yadav, A. Gaur, G. Varma, in AIP Conference Proceedings (American Institute of Physics, 2011), pp. 1263.

  19. M. Staruch, H. Gao, P.-X. Gao, M. Jain, Adv. Funct. Mater. 22, 3591 (2012)

    Article  Google Scholar 

  20. G. Venkataiah, P.V. Reddy, J. Magn. Magn. Mater. 285, 343 (2005)

    Article  ADS  Google Scholar 

  21. Y. Zhou, X. Zhu, S. Li, Ceram. Int. 43, 10026 (2017)

    Article  Google Scholar 

  22. A. De Andres, M. Garcia-Hernandez, J. Martinez, Phys. Rev. B 60, 7328 (1999)

    Article  ADS  Google Scholar 

  23. Y. Zhou, X. Zhu, S. Li, Ceram. Int. 43, 3679 (2017)

    Article  Google Scholar 

  24. A. Modi, M.A. Bhat, D.K. Pandey, S. Bhattacharya, N.K. Gaur, G.S. Okram, J. Magn. Magn. Mater. 424, 459 (2017)

    Article  ADS  Google Scholar 

  25. K. Lim, S. Halim, S. Chen, M.A. Kechik, S. Ng, W.W. Jusoh, in Journal of Physics: Conference Series (IOP Publishing, 2018), p. 012059.

  26. M. Eshraghi, H. Salamati, P. Kameli, J. Phys. Condens. Matter 18, 8281 (2006)

    Article  ADS  Google Scholar 

  27. P. Phong, N. Khiem, N. Dai, D. Manh, L. Hong, N. Phuc, J. Alloy. Compd. 484, 12 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research was fully funded and supported by Universiti Putra Malaysia (UPM) research grants (GP-IPS/2018/9663900) and Ministry of Education (MOE) through the Fundamental Research Grant Scheme (FRGS/1/2019/STG07/UPM/02/4). The authors are grateful to the supported staffs who helped in characterisation measurements and the facilities provided by UPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, L.N., Lim, K.P., Ngai, L.M. et al. Influence of Al2O3 on the low-field magnetoresistance of sol–gel grown La0.67Ca0.33MnO3:Al2O3 nanocomposites. Appl. Phys. A 126, 730 (2020). https://doi.org/10.1007/s00339-020-03924-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03924-5

Keywords

Navigation