Skip to main content
Log in

Reflective photonic nanojets generated from cylindrical concave micro-mirrors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Reflective photonic nanojets (r-PNJs) produced by cylindrical concave micro-mirrors are numerically investigated. Simulation shows that the full-width at half-maximum (FWHM) of the r-PNJ is associated with the angle of the cylindrical concave mirror. It is found that the FWHM of the r-PNJ can achieve 0.37 of the wavelength, when the mirror with the angle θ = 130° is put in air. For the concave mirror immersed in water with θ = 100°, the FWHM of the r-PNJ can reach about 0.3λ. Two symmetric vortexes of Poynting vectors are close to the r-PNJ, which leads to the narrowed r-PNJ. Through combining a dielectric micro-cylinder with the concave mirror immersed in water, the waist of the r-PNJ can achieve 0.27 of the incident wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.A. Jenkins, H.E. White, Fundamentals of optics (Tata McGraw-Hill Education, New York, 1937)

    MATH  Google Scholar 

  2. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  3. A. Heifetz, S.C. Kong, A.V. Sahakian, A. Taflove, V. Backman, Photonic nanojets. J. Comput. Theor. Nanosci. 6(9), 1979–1992 (2009)

    Article  Google Scholar 

  4. B.S. Luk’yanchuk, R. Paniagua-Domínguez, I.V. Minin, O.V. Minin, Z. Wang, Refractive index less than two: photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express 7(6), 1820–1847 (2017)

    Article  ADS  Google Scholar 

  5. J. Zhu, L.L. Goddard, All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nanoscale Adv. 1(12), 4615–4643 (2019)

    Article  ADS  Google Scholar 

  6. Z. Chen, A. Taflove, V. Backman, Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12(7), 1214–1220 (2004)

    Article  ADS  Google Scholar 

  7. Z. Wang, W. Guo, L. Li, B.S. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, M. Hong, Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2(1), 1–6 (2011)

    Google Scholar 

  8. H. Yang, R. Trouillon, G. Huszka, A.M.M. Gijs, Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 16(8), 4862–4870 (2016)

    Article  ADS  Google Scholar 

  9. L. Chen, Y. Zhou, Y. Li, M. Hong, Microsphere enhanced optical imaging and patterning: from physics to applications. Appl. Phys. Rev. 6(2), 021304 (2019)

    Article  ADS  Google Scholar 

  10. C.-Y. Liu, K.L. Hsiao, Direct imaging of optimal photonic nanojets from core-shell microcylinders. Opt. Lett. 40(22), 5303–5306 (2015)

    Article  ADS  Google Scholar 

  11. A. Darafsheh, D. Bollinger, Systematic study of the characteristics of the photonic nanojets formed by dielectric microcylinders. Opt. Commun. 402, 270–275 (2017)

    Article  ADS  Google Scholar 

  12. J.N. Monks, B. Yan, N. Hawkins, F. Vollrath, Z. Wang, Spider silk: mother nature’s bio-superlens. Nano Lett. 16(9), 5842–5845 (2016)

    Article  ADS  Google Scholar 

  13. B.S. Luk’Yanchuk, Z. Wang, W. Song, M. Hong, Particle on surface: 3D-effects in dry laser cleaning. Appl. Phys. A 79(4), 747–751 (2004)

    Article  ADS  Google Scholar 

  14. I.V. Minin, O.V. Minin, N.A. Kharitoshin, Localized high field enhancements from hemispherical 3D mesoscale dielectric particles in the refection mode. In: 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM 2015—Proceedings

  15. I.V. Minin, O.V. Minin, V. Pacheco-Peña, M. Beruete, Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode. Opt. Lett. 40(10), 2329–2332 (2015)

    Article  ADS  Google Scholar 

  16. I.V. Minin, O.V. Minin, I.S. Nefedov, Photonic jets from Babinet’s cuboid structures in the reflection mode. Opt. Lett. 41(4), 785–787 (2016)

    Article  ADS  Google Scholar 

  17. I.V. Minin, O.V. Minin, V. Pacheco-Peña, M. Beruete, Subwavelength, standing-wave optical trap based on photonic jets. Quantum Electron. 46(6), 555 (2016)

    Article  ADS  Google Scholar 

  18. I.V. Minin, C.-Y. Liu, Y.-C. Yang, K. Staliunas, O.V. Minin, Experimental observation of flat focusing mirror based on photonic jet effect. Sci. Rep. 10(1), 8459 (2020)

    Article  ADS  Google Scholar 

  19. L. Yue, B. Yan, J.N. Monks, R. Dhama, Z. Wang, O.V. Minin, I.V. Minin, Photonic jet by a near-unity-refractive-index sphere on a dielectric substrate with high index contrast. Ann. Phys. 530(6), 1800032 (2018)

    Article  Google Scholar 

  20. Y.E. Geints, A.A. Zemlyanov, I.V. Minin, O.V. Minin, Overcoming refractive index limit of mesoscale light focusing by means of specular-reflection photonic nanojet. Opt. Lett. 45(14), 3885–3888 (2020)

    Article  ADS  Google Scholar 

  21. I.V. Minin, Y. Geints, A. Zemlyanov, O.V. Minin, An extensive study of specular-reflection photonic nanojet: Physical basis and optical trapping application. Opt. Express 28(15), 222690–222704 (2020)

    Article  Google Scholar 

  22. Y.S. Ow, M.B.H. Breese, S. Azimi, Fabrication of concave silicon micro-mirrors. Opt. Express 18(14), 14511–14518 (2010)

    Article  ADS  Google Scholar 

  23. Y. Bao, F. Zhou, T.W. LeBrun, J.J. Gorman, Concave silicon micromirrors for stable hemispherical optical microcavities. Opt. Express 25(13), 15493–15503 (2017)

    Article  ADS  Google Scholar 

  24. Y. Sabry, B. Saadany, D. Khalil, T. Bourouina, Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light. Light Sci. Appl. 2, e94 (2013)

    Article  ADS  Google Scholar 

  25. A.E. Goodling, S. Nagelberg, B. Kaehr, C.H. Meredith, S.I. Cheon, A.P. Saunders, M. Kolle, L.D. Zarzar, Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566(7745), 523–527 (2019)

    Article  ADS  Google Scholar 

  26. C.Y. Liu, H.J. Chung, E. Hsuan-Pei, Reflective photonic hook achieved by dielectric-coated concave hemi-cylindrical mirror. J. Opt. Soc. Am. B Opt. Phys. 37, 2528–2533 (2020). https://doi.org/10.1364/JOSAB.399434

    Article  ADS  Google Scholar 

  27. https://cn.comsol.com/. Accessed 18 Aug 2020

  28. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  29. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  ADS  Google Scholar 

  30. Z. Wang, B.S. Luk’Yanchuk, M. Hong, Y. Lin, T. Chong, Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B 70(3), 035418 (2004)

    Article  ADS  Google Scholar 

  31. Z. Wang, B.S. Lu’kyanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O.V. Minin, I.V. Minin, S. Huang, A.A. Fedyanin, High order Fano resonances and giant magnetic fields in dielectric microspheres. Sci. Rep. 9(1), 20293 (2019)

    Article  ADS  Google Scholar 

  32. K. Huang, H. Ye, J. Teng, S.P. Yeo, B.S. Luk’yanchuk, C.-W. Qiu, Optimization-free superoscillatory lens using phase and amplitude masks. Laser Photonics Rev. 8(1), 152–157 (2014)

    Article  ADS  Google Scholar 

  33. F. Qin, K. Huang, J. Wu, J. Teng, C.-W. Qiu, M. Hong, A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29(8), 1602721 (2017)

    Article  Google Scholar 

  34. I. Mathariq, V.N. Astratov, H. Kurt, Persistence of photonic nanojet formation under the deformation of circular boundary. J. Opt. Soc. Am. B 33(4), 535 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the open fund HGAMTL-1803 from Jiangsu Key Laboratory of Advanced Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Gao, R., Wang, Y. et al. Reflective photonic nanojets generated from cylindrical concave micro-mirrors. Appl. Phys. A 126, 717 (2020). https://doi.org/10.1007/s00339-020-03918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03918-3

Keywords

Navigation