Skip to main content
Log in

Intensity of photonic nanojets improved by means of a mirror

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Photonic nanojets (PNJs) have been used successfully in super-resolution imaging and optical intensity enhancement benefitting from their sub-wavelength beam waists and high intensity. Herein, we introduce a method to further enhance the intensity of PNJs through adding a mirror. About 4 times enhancement factor can be achieved by appropriately selecting the gap length between the cylinder, which generates the PNJ under a TE polarized plane wave illumination, and the mirror. The intensity distributions of the PNJs can be modulated by changing the gap length. Our simulation shows that the full width at half maximum (FWHM) of the beam waist of the enhanced PNJ can reach less than λ/2nb (nb, the refractive index of the surrounding medium) with the illumination at 638 nm, when the refractive index of the cylinder is carefully chosen. Finally, we demonstrate that the added mirror can also work in TM and circular polarized illuminations. Our results are of interest for various applications in nanoparticle manipulation and optical nonlinear enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A Heifetz, S C Kong, A V Sahakian, A Taflove and V Backman J. Comput. Theor. Nanosci. 6 1979 (2009).

    Article  Google Scholar 

  2. B S Luk’yanchuk, R Paniagua-Domínguez, I V Minin, O V Minin and Z Wang Opt. Mater. Express 7 1820 (2017).

    Article  ADS  Google Scholar 

  3. A Darafsheh and D Bollinger Opt. Commun. 402 270 (2017).

    Article  ADS  Google Scholar 

  4. J Zhu and L L Goddard Nano Adv. 1 4615 (2019).

    Article  Google Scholar 

  5. A Darafsheh J. Phys. Photonics 3 022001 (2021).

    Article  ADS  Google Scholar 

  6. Z Wang, W Guo, L Li, B S Luk’yanchuk, A Khan, Z Liu, Z Chen and M Hong Nat. Commun. 2 1 (2011).

    Google Scholar 

  7. A Darafsheh, G F Walsh, L D Negro and V N Astratov Appl. Phys. Lett. 101 141128 (2012).

    Article  ADS  Google Scholar 

  8. A Darafsheh, C Guardiola, A Palovcak, J C Finlay and A Cárabe Opt. Lett. 40 5 (2015).

    Article  ADS  Google Scholar 

  9. L Chen, Y Zhou, Y Li and M Hong Appl. Phys. Rev. 6 21304 (2019).

    Article  Google Scholar 

  10. A Darafsheh J. Appl. Phys. 131 031102 (2022).

    Article  ADS  Google Scholar 

  11. H Yang, M Cornaglia and M A M Gijs Nano Lett. 15 1730 (2015).

    Article  ADS  Google Scholar 

  12. Y Li, H Xin, H Lei, L Liu, Y Zhang and B Li Light-Sci. Appl. 5 e1617616176 (2016).

    Google Scholar 

  13. Y Li, H Xin, X Liu, Y Zhang, H Lei and B Li ACS Nano 10 5800 (2016).

    Article  Google Scholar 

  14. C Xing et al. ACS Appl. Mater. Inter. 9 32896 (2017).

    Article  Google Scholar 

  15. H S Patel, P K Kushwaha and M K Swami J. Appl. Phys. 123 23102 (2018).

    Article  Google Scholar 

  16. P B Johnson et al. Optica 8 674 (2021).

    Article  ADS  Google Scholar 

  17. J Yang, P Twardowski, P Gérard, Y Duo, J Fontaine and S Lecler Opt. Express 26 3723 (2018).

    Article  ADS  Google Scholar 

  18. H Xing, W Zhou and Y Wu Opt. Lett. 43 4292 (2018).

    Article  ADS  Google Scholar 

  19. Y Huang, Z Zhen, Y Shen, C Min and G Veronis Opt. Express 27 1310 (2019).

    Article  ADS  Google Scholar 

  20. V Pacheco-Peña and M Beruete J. Appl. Phys. 125 084104 (2019).

    Article  ADS  Google Scholar 

  21. Z Zhen, Y Huang, Y Feng, Y Shen and Z Li Opt. Express 27 9178 (2019).

    Article  ADS  Google Scholar 

  22. S Zhou and T Zhou Appl. Phys. Express 13 42010 (2020).

    Article  Google Scholar 

  23. S Zhou and M Yu Opt Quant. Electron. 53 1 (2021).

    Article  Google Scholar 

  24. C Zhang, J Lin and M Gu Opt. Lett. 46 3127 (2021).

    Article  ADS  Google Scholar 

  25. Y Geints, A Zemlyanov, I V Minin and O V Minin Opt. Lett. 45 3885 (2020).

    Article  ADS  Google Scholar 

  26. I V Minin, Y Geints, A Zemlyanov and O V Minin Opt. Express 28 22690 (2020).

    Article  ADS  Google Scholar 

  27. https://cn.comsol.com/wave-optics-module

  28. P B Johnson and R W Christy Phys. Rev. B 6 4370 (1972).

    Article  ADS  Google Scholar 

  29. A D Rakić, A B Djurišić, J M Elazar and M L Majewski Appl. Opt. 37 5271 (1998).

    Article  ADS  Google Scholar 

  30. A Darafsheh Opt. Lett. 42 735 (2017).

    Article  ADS  Google Scholar 

  31. I V Minin, O V Minin, Y Cao, B Yan, Z Wang and B S Luk’yanchuk Opto-Electron Sci. 1 210008 (2022).

    Article  Google Scholar 

  32. S Zhou Opt. Quant. Electron. 51 112 (2019).

    Article  Google Scholar 

  33. R Chen, J Lin, P Jin, M Cada and Y Ma Opt. Commun. 456 124593 (2020).

    Article  Google Scholar 

  34. Y E Geints, E K Panina, I V Minin and O V Minin J. Opt. 23 065101 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Research Program of Huai'an (No. HAB202153), and State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body (No. HGAMTL-1607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Zhou.

Ethics declarations

Disclosures

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wang, Y. & Yang, G. Intensity of photonic nanojets improved by means of a mirror. Indian J Phys 97, 907–913 (2023). https://doi.org/10.1007/s12648-022-02428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02428-7

Keywords

Navigation