Skip to main content
Log in

ChemFET Sensor: nanorods of nickel-substituted Metal–Organic framework for detection of SO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ChemFET-based nanorods of nickel substituted Metal–Organic framework (MOF) were explored for detection of SO2 gas analytes. Nanorods of nickel based MOF (Ni3HHTP2) were synthesized by chemical method at 90 °C temperature. The structural, surface morphological and spectroscopic characterizations were explored using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Fourier Transformation Infrared (FTIR), respectively. The back gated Field Effect Transistor (FET) was constructed using gold microelectrodes having 3 µm gap referring as source and drain on silicon/silicon dioxide (gate) substrate and Ni3HHTP2 MOF used to bridge channel between source and drain. The transfer and output characteristics of Ni3HHTP2 MOF based FET were studied in present investigation. Sensing behaviors of Ni3HHTP2 MOF based FET was explored at lower detection limit 625 ppb (which is well below than permeable exposure level (PEL) level of SO2 suggested by OSHA) for SO2 gas analytes. Ni3HHTP2 MOF based FET shows p type behavior with carrier mobility 8.5 × 10–2 cm2/Vs and threshold voltage (VTH = 0.6 V).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Li et al., Emerging multifunctional metal–organic framework materials. Adv. Mater. 28(40), 8819–8860 (2016)

    Article  ADS  Google Scholar 

  2. M.K. Smith et al., Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28(15), 5264–5268 (2016)

    Article  Google Scholar 

  3. DMello, M.E., N.G. Sundaram, and S.B. Kalidindi, Assembly of ZIF‐67 Metal–Organic Framework over Tin Oxide Nanoparticles for Synergistic Chemiresistive CO2 Gas Sensing. Chem. A Eur. J., 2018. 24(37): 9220–9223.

  4. S. Abednatanzi et al., Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 48(9), 2535–2565 (2019)

    Article  Google Scholar 

  5. W.-T. Koo et al., Heterogeneous sensitization of metal–organic framework driven metal@ metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016)

    Article  Google Scholar 

  6. X. Wang et al., Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sens. Actu. B: Chem. 251, 27–33 (2017)

    Article  Google Scholar 

  7. M.S. Yao et al., Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 56(52), 16510–16514 (2017)

    Article  Google Scholar 

  8. M.G. Campbell et al., Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. J. Am. Chem. Soc. 137(43), 13780–13783 (2015)

    Article  Google Scholar 

  9. M.G. Campbell, M. Dincă, Metal–organic frameworks as active materials in electronic sensor devices. Sensors 17(5), 1108 (2017)

    Article  Google Scholar 

  10. X. Li et al., Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. J. Am. Chem. Soc. 141(30), 12021–12028 (2019)

    Article  Google Scholar 

  11. P. Yang et al., Polyoxometalate–cyclodextrin metal–organic frameworks: from tunable structure to customized storage functionality. J. Am. Chem. Soc. 141(5), 1847–1851 (2019)

    Article  Google Scholar 

  12. Y.-H. Luo et al., From molecular metal complex to metal-organic framework: the CO2 reduction photocatalysts with clear and tunable structure. Coord. Chem. Rev. 390, 86–126 (2019)

    Article  Google Scholar 

  13. M. Bagheri, M.Y. Masoomi, Sensitive ratiometric fluorescent metal-organic framework (MOF) sensor for calcium signaling in human blood ionic concentrations media. ACS Appl. Mater. Interf. 12, 4625–4631 (2020)

    Article  Google Scholar 

  14. M.G. Campbell et al., Cu3 (hexaiminotriphenylene) 2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew. Chem. Int. Ed. 54(14), 4349–4352 (2015)

    Article  Google Scholar 

  15. D. Zhang et al., Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure. J. Mater. Sci.: Mater. Electron. 30(12), 11070–11078 (2019)

    Google Scholar 

  16. Q. Wang et al., A white-light-emitting single MOF sensor-based array for berberine homologue discrimination. J Mater Chem C 8, 1433–1439 (2020)

    Article  Google Scholar 

  17. W. Dang et al., AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J. Electroanal. Chem. 856, 113592 (2020)

    Article  Google Scholar 

  18. X.-L. Zhang et al., Ammoniated MOF-74 (Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicol. Environ. Saf. 187, 109821 (2020)

    Article  Google Scholar 

  19. Occupational Safety and Health Administration (OSHA). Permissible Exposures Limits. https://www.osha.gov

  20. C. Becchio et al., The effects of indoor and outdoor air pollutants on workers’ productivity in office building. EDP Sci. 111, 2555–0403 (2019)

    Google Scholar 

  21. Y. Qian et al., Environmental responsibility for sulfur dioxide emissions and associated biodiversity loss across Chinese provinces. Environ. Pollut. 245, 898–908 (2019)

    Article  Google Scholar 

  22. Y. Wu et al., The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241, 125031 (2020)

    Article  ADS  Google Scholar 

  23. K. de Hoogh et al., Development of land use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 47(11), 5778–5786 (2013)

    Article  ADS  Google Scholar 

  24. S. Iwasawa et al., Effects of sulfur dioxide on fractional exhaled nitric oxide concentration in the child residents of Miyakejima Island. Asian J Atmos Environ (AJAE) 13(2), 144 (2019)

    Article  Google Scholar 

  25. S.S.A. Al-Abbas, M.K. Muhsin, H.R. Jappor, Two-dimensional GaTe monolayer as a potential gas sensor for SO2 and NO2 with discriminate optical properties. Superlattices Microstruct. 135, 106245 (2019)

    Article  Google Scholar 

  26. Y. Takimoto et al., Detection of SO2 at the ppm Level with localized surface plasmon resonance (LSPR) sensing. Plasmonics 3, 1–7 (2019)

    Google Scholar 

  27. M. Höfer, S. Hillig, H. Wassmuth, Improvement of the Kelvin method by overtone detection and application to adsorption and desorption studies of SO2 on Pt (111). Vacuum 41(1–3), 102–104 (1990)

    Article  Google Scholar 

  28. N.D. Hoang et al., Enhanced SO2 sensing characteristics of multi-wall carbon nanotubes based mass-type sensor using two-step purification process. Sens. Actu A 295, 696–702 (2019)

    Article  Google Scholar 

  29. Y. Liu et al., An integrated micro-chip with Ru/Al2O3/ZnO as sensing material for SO2 detection. Sens Actu B Chem 262, 26–34 (2018)

    Article  Google Scholar 

  30. Singh, A.K., Tunable graphene chem-FET and graphene/Si heterojunction chemi-diode sensors. Mater. Sci. 2014. https://scholarcommons.sc.edu/etd/2879

  31. K. Datta et al., Fe nanoparticle tailored poly (N-methyl pyrrole) nanowire matrix: a CHEMFET study from the perspective of discrimination among electron donating analytes. J. Phys. D Appl. Phys. 48(19), 195301 (2015)

    Article  ADS  Google Scholar 

  32. B. Kumar et al., The role of external defects in chemical sensing of graphene field-effect transistors. Nano Lett. 13(5), 1962–1968 (2013)

    Article  ADS  Google Scholar 

  33. N. Ingle et al., Sulfur dioxide (SO2) detection using composite of nickel benzene carboxylic (Ni3BTC2) and OH-functionalized single walled carbon nanotubes (OH-SWNTs). Front Mater (2020). https://doi.org/10.3389/fmats.2020.00093

    Article  Google Scholar 

  34. G.A. Bodkhe et al., Field effect transistor based on proton conductive metal organic framework (CuBTC). J. Phys. D Appl. Phys. 52(33), 335105 (2019)

    Article  Google Scholar 

  35. M.K. Smith, K.A. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017)

    Article  Google Scholar 

  36. J.M. Lee, W. Lee, Effects of surface roughness on hydrogen gas sensing properties of single Pd nanowires. J. Nanosci. Nanotechnol. 11(3), 2151–2154 (2011)

    Article  Google Scholar 

  37. K. Datta et al., Organic field-effect transistors: predictive control on performance parameters. J. Phys. D Appl. Phys. 46(49), 495110 (2013)

    Article  Google Scholar 

  38. P. Ghosh et al., Poly (o-toluidine) nanowires based organic field effect transistors: a study on influence of anionic size of dopants and SWNTs as a dopant. J Phys Chem C 117(29), 15414–15420 (2013)

    Article  Google Scholar 

  39. Q. Zhou et al., High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO–ZnO nanodisks. Sens Actu B Chem 298, 126870 (2019)

    Article  Google Scholar 

  40. W. Li et al., UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens Actu B Chem 290, 443–452 (2019)

    Article  Google Scholar 

  41. H.C. Su et al., Chemiresistive sensor arrays for detection of air pollutants based on carbon nanotubes functionalized with porphyrin and phthalocyanine derivatives. Sens Actu Rep 2, 100011 (2020)

    Google Scholar 

  42. U. Chaitra et al., Growth and characterization of undoped and aluminium doped zinc oxide thin films for SO2 gas sensing below threshold value limit. Appl. Surf. Sci. 496, 143724 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Inter University Accelerator Center (IUAC), New Delhi for providing financial and material science beamline with FESEM facilities through IUAC-UGC project having UFR-62320 & UFR-62321. Also thankful to DEST-SERB (sanction no. EEQ/2017/000645), UGC-DAE CSR (RRCAT) Indore (Project No. CSR-IC-BL66/CSR-183/2016-17/847), UGC-SAP programme (F.530/16/DRS-1/2016 (SAP-II), dt. 16-04-2016), DST-FIST (Project No. No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016), Rashtria Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra for providing characterization facilities. Also thankful to Dr. Saif A. Khan, IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra D. Shirsat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingle, N., Sayyad, P., Bodkhe, G. et al. ChemFET Sensor: nanorods of nickel-substituted Metal–Organic framework for detection of SO2. Appl. Phys. A 126, 723 (2020). https://doi.org/10.1007/s00339-020-03907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03907-6

Keywords

Navigation