Skip to main content
Log in

Influence of swift heavy ion irradiation on sensing properties of nickel-(NRs-Ni3HHTP2) metal-organic framework

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Repercussion of Swift Heavy Ion (SHI) irradiation on nickel-based nanorods of Metal-Organic Framework (NRs-Ni3HHTP2 MOF) for enhancement in the properties of ChemFET-based gas sensor has been investigated. Nanorods of Ni3HHTP2-MOF were synthesized by chemical method and exposed to C12+ ions irradiation with fluence 1 × 1011 ion/cm2 and 1 × 1012 ion/cm2. The structural, spectroscopic, morphological, and optical characterizations were carried out using x-ray diffraction (XRD), fourier transfer infrared spectroscopy (FTIR), atomic force microscopy (AFM) with scanning electron microscopy (SEM), and UV-visible spectroscopy, respectively, whereas the bandgap was calculated from the Tauc’s plot. The synthesized nanorods of Ni3HHTP2 MOF were drop-casted on gold-coated microelectrodes on silicon/silicon dioxide (Si/SiO2) substrate, where silicon layer serves as a gate and gold microelectrodes on silicon/silicon dioxide (Si/SiO2) substrate as a source and drain. The transmutations in material properties due to SHI irradiations were serviceable for enhancing field-effect transistor (transfer and output) properties and sensing properties. After Swift Heavy Ion (SHI) irradiation (1 × 1011 ion/cm2), it shows excellent response and recovery time i.e., 20 and 23 s, respectively, for 1 ppm SO2 concentration at room temp (RT) with a lower detection limit of 0.625 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.A. Bodkhe et al., Field effect transistor based on proton conductive metal organic framework (CuBTC). J. Phys. D: Appl. Phys. 52(33), 335105 (2019)

    Article  CAS  Google Scholar 

  2. D. Wang, D. Jana, Y. Zhao, Metal–Organic Framework Derived Nanozymes in Biomedicine. Acc. Chem. Res. 53(7), 1389–1400 (2020)

    Article  CAS  Google Scholar 

  3. G.A. Bodkhe et al., Selective and sensitive detection of lead Pb(II) ions: Au/SWNT nanocomposite-embedded MOF-199. J. Mater. Sci. 56(1), 474–487 (2020)

    Article  CAS  Google Scholar 

  4. A. Rashti et al., Tuning MOF-derived Co3O4/NiCo2O4 nanostructures for high-performance energy storage. ACS Appl. Energy Mater. 4(2), 1537–1547 (2021)

    Article  CAS  Google Scholar 

  5. N. Ingle et al., Sulfur dioxide (SO2) detection using composite of Nickel benzene carboxylic (Ni3BTC2) and OH-functionalized single walled carbon nanotubes (OH-SWNTs). Front. Mater. 7, 93 (2020)

    Article  Google Scholar 

  6. M. Dinari, F. Jamshidian, Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. Polymer 215, 123383 (2021)

    Article  CAS  Google Scholar 

  7. M. Mahadik et al., EDTA modified PANI/GO composite based detection of Hg(II) ions. Front. Mater. 7, 81 (2020)

    Article  Google Scholar 

  8. H. Nazemi et al., Advanced micro-and nano-gas sensor technology: a review. Sensors 19(6), 1285 (2019)

    Article  CAS  Google Scholar 

  9. A. Nowoświat, L. Dulak, Impact of cement dust pollution on the surface of sound-absorbing panels on their acoustic properties. Materials 13(6), 1422 (2020)

    Article  CAS  Google Scholar 

  10. P.W. Sayyad et al., Chemiresistive SO2 sensor: graphene oxide (GO) anchored poly (3,4-ethylenedioxythiophene): poly (4styrenesulfonate)(PEDOT: PSS). Appl. Phys. A 126(11), 1–8 (2020)

    Article  CAS  Google Scholar 

  11. Y. Wu et al., The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241, 125031 (2020)

    Article  CAS  Google Scholar 

  12. A. Yang et al., Single ultrathin WO3 nanowire as a superior gas sensor for SO2 and H2S: Selective adsorption and distinct IV response. Mater. Chem. Phys. 240, 122165 (2020)

    Article  CAS  Google Scholar 

  13. Q. Zhou et al., High sensitive and low-concentration sulfur dioxide (SO2) gas sensor application of heterostructure NiO-ZnO nanodisks. Sens. Actuators B 298, 126870 (2019)

    Article  CAS  Google Scholar 

  14. V. Kumar, D.R. Roy, Single-layer stanane as potential gas sensor for NO2, SO2, CO2 and NH3 under DFT investigation. Physica E 110, 100–106 (2019)

    Article  CAS  Google Scholar 

  15. N. Ingle et al., A chemiresistive gas sensor for sensitive detection of SO 2 employing Ni-MOF modified–OH-SWNTs and–OH-MWNTs. Appl. Phys. A 127(2), 1–10 (2021)

    Article  CAS  Google Scholar 

  16. M. Tchalala et al., Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 10(1), 1–10 (2019)

    Article  CAS  Google Scholar 

  17. A.S. El-Said et al., Tuning tailored single-walled carbon nanotubes by highly energetic heavy ions. Phys. Rev. Appl. 13(4), 044073 (2020)

    Article  CAS  Google Scholar 

  18. H. Gupta et al., Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation. Phys. Chem. Chem. Phys. 21(27), 15019–15029 (2019)

    Article  CAS  Google Scholar 

  19. P. Esquinazi et al., Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91(22), 227201 (2003)

    Article  CAS  Google Scholar 

  20. A. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107(7), 3 (2010)

    Article  CAS  Google Scholar 

  21. I.I.I. Wood et al., Perspectives on the relationship between materials chemistry and roll-to-roll electrode manufacturing for high-energy lithium-ion batteries. Energy Storage Mater. 29, 254–265 (2020)

    Article  Google Scholar 

  22. S. Raghuvanshi et al., Dual control on structure and magnetic properties of Mg ferrite: role of swift heavy ion irradiation. J. Magn. Magn. Mater. 471, 521–528 (2019)

    Article  CAS  Google Scholar 

  23. A. Ratan et al., Enhanced electrical properties of few layers MoS2-PVA nanocomposite film via homogeneous dispersion and annealing effect induced by 80 MeV Carbon6 + swift heavy ion irradiation. Mater. Sci. Semicond. Process. 108, 104877 (2020)

    Article  CAS  Google Scholar 

  24. M. Karlušić et al., Nanopatterning surfaces by grazing incidence swift heavy ion irradiation. Appl. Surf. Sci. 541, 148467 (2021)

    Article  CAS  Google Scholar 

  25. R. Singh et al., Tuning of defects induced visible photoluminescence by swift heavy ion irradiation and thermal annealing in zinc oxide films. Radiat. Phys. Chem. 183, 109400 (2021)

    Article  CAS  Google Scholar 

  26. J. Zeng et al., Graphene electrical properties modulated by swift heavy ion irradiation. Carbon 154, 244–253 (2019)

    Article  CAS  Google Scholar 

  27. N. Manikanthababu et al., Swift heavy ion irradiation-induced modifications in the electrical and surface properties of β-Ga2O3. Appl. Phys. Lett. 117(14), 142105 (2020)

    Article  CAS  Google Scholar 

  28. H.K. Patil et al., Reinforcement of polyaniline and poly-(o-toluidine) with SWNTs and tuning of their physicochemical properties by heavy ion beams. Appl. Phys. A 124(7), 491 (2018)

    Article  CAS  Google Scholar 

  29. H.K. Patil, et al., Spectroscopic investigations upon 100 MeV oxygen ions irradiation on polyaniline and poly-o-toluidine. In: AIP Conference Proceedings. 2018. AIP Publishing LLC

  30. O. Ochedowski et al., Radiation hardness of graphene and MoS2 field effect devices against swift heavy ion irradiation. J. Appl. Phys. 113(21), 214306 (2013)

    Article  CAS  Google Scholar 

  31. T. Bolse, H. Paulus, W. Bolse, Swift heavy ion induced dewetting of metal oxide thin films on silicon. Nucl. Instrum. Methods Phys. Res. Sect. B 245(1), 264–268 (2006)

    Article  CAS  Google Scholar 

  32. R. Dutta, A. Kumar, 100 MeV O7+ ion irradiation induced electrochemical enhancement in NiBTC metal-organic framework based composite polymer electrolytes incorporated with ionic liquid. Mater. Res. Exp. 6(8), 085305 (2019)

    Article  CAS  Google Scholar 

  33. P.W. Sayyad et al., Tuning the properties of Fe-BTC metal-organic frameworks (MOFs) by swift heavy ion (SHI) irradiation. Radiat Effects Defects Solids (2020). https://doi.org/10.1080/10420150.2020.1825958

    Article  Google Scholar 

  34. N. Ingle et al., ChemFET Sensor: nanorods of nickel-substituted metal–organic framework for detection of SO2. Appl. Phys. A 126(9), 1–9 (2020)

    Article  CAS  Google Scholar 

  35. T.D. Malouff et al., Carbon ion therapy: a modern review of an emerging technology. Front. Oncol. 10, 82 (2020)

    Article  Google Scholar 

  36. K. Datta et al., Organic field-effect transistors: predictive control on performance parameters. J. Phys. D: Appl. Phys. 46(49), 495110 (2013)

    Article  CAS  Google Scholar 

  37. M. Ko et al., Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 142(27), 11717–11733 (2020)

    Article  CAS  Google Scholar 

  38. M.K. Smith et al., Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem. Mater. 28(15), 5264–5268 (2016)

    Article  CAS  Google Scholar 

  39. M.K. Smith, K.A. Mirica, Self-organized frameworks on textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139(46), 16759–16767 (2017)

    Article  CAS  Google Scholar 

  40. J. Ram et al., Ion beam engineering in WO3-PEDOT: PSS hybrid nanocomposite thin films for gas sensing measurement at room temperature. Inorg. Chem. Commun. 119, 108000 (2020)

    Article  CAS  Google Scholar 

  41. H. Xu et al., Ag/Ag2S nanoparticle-induced sensitization of recovered sulfur-doped SnO2 nanoparticles for SO2 detection. ACS Appl. Nano Mater. 3(8), 8075–8087 (2020)

    Article  CAS  Google Scholar 

  42. R.U. Mene, M.P. Mahabole, R.S. Khairnar, Surface modified hydroxyapatite thick films for CO2 gas sensing application: effect of swift heavy ion irradiation. Radiat. Phys. Chem. 80(6), 682–687 (2011)

    Article  CAS  Google Scholar 

  43. H. Xu et al., Ag/Ag2S nanoparticle-induced sensitization of recovered sulfur-doped SnO2 nanoparticles for SO2 detection. ACS Appl. Nano Mater. 8, 8075–8087 (2020)

    Article  CAS  Google Scholar 

  44. Y. Liu et al., An integrated micro-chip with Ru/Al2O3/ZnO as sensing material for SO2 detection. Sens. Actuators B 262, 26–34 (2018)

    Article  CAS  Google Scholar 

  45. L. Liu, S. Liu, Oxygen vacancies as an efficient strategy for promotion of low concentration SO2 gas sensing: the case of Au-modified SnO2. ACS Sustain. Chem. Eng. 6(10), 13427–13434 (2018)

    Article  CAS  Google Scholar 

  46. S.K. Lim et al., Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor. Sens. Actuators B 160(1), 94–98 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Inter-University Accelerator Center (IUAC), New Delhi (UFR-62320 & UFR-62321) for material science beamline with SEM facilities and financial support and DST-SERB (Sanction No. EEQ/2017/000645), UGC-DAE CSR (RRCAT), Indore (Project No. CSR-IC-BL66/CSR-183/2016-17/847), UGC-SAP programme (F.530/16/DRS-1/2016 (SAP-II), dt. 16-04-2016), DST-FIST (Project No. No. SR/FST/PSI-210/2016(C) dtd. 16/12/2016), Rashtria Uchachatar Shiksha Abhiyan (RUSA), Government of Maharashtra for providing characterization facilities. The authors also thank Dr. Saif A. Khan, IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Shirsat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingle, N.N., Shirsat, S., Sayyad, P. et al. Influence of swift heavy ion irradiation on sensing properties of nickel-(NRs-Ni3HHTP2) metal-organic framework. J Mater Sci: Mater Electron 32, 18657–18668 (2021). https://doi.org/10.1007/s10854-021-06353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06353-z

Navigation