Skip to main content
Log in

First-principle insights of CO and NO detection via antimonene nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

First-principle investigations under the flagship of density functional theory have been performed to analyze the prospects of antimonene nanoribbons (SbNR) for carbon mono-oxide (CO) and nitric oxide (NO) sensing applications. We have explored various adsorption configurations of gas molecules on the edges of bare and silicon-doped SbNR with zigzag and armchair edge states. Based on adsorption energy (\(E_{\text{ads}}\)) calculations, it is revealed that CO and NO molecules tend to physisorbed on SbNRs substrate. However, upon the introduction of silicon impurity, gas molecules prefer to chemisorb on SbNRs. The electronic properties’ calculations based on band structures and density of states (DOS) profile predict substantial modification in the band structures of the SbNRs after CO and NO adsorption. Charge transfer analysis indicates that gas molecules act as an acceptor on undoped SbNRs whereas act as a donor on a substitutionally doped substrate. To explore deep into the interaction between the gas molecule and SbNRs’ substrate, charge difference density and projected DOS have been plotted and examined. Furthermore, to determine the feasibility, IV characteristics have been calculated using a standard two-probe model. It is evident from IV characteristics that gas adsorption has a prominent impact on the current-carrying capability of SbNR. Finally, the recovery time is calculated to analyze the desorption performance of CO/NO adsorbed on bare and Si-doped SbNRs, henceforth projecting the potential of SbNRs for CO and NO sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Ghosh, P. Parida, Int. J. Curr. Res. 7, 22194 (2015)

    Google Scholar 

  2. A. Ghorani-Azam, B. Riahi-Zanjani, M. Balali-Mood, J. Res. Med. Sci. 21, 1 (2016)

    Google Scholar 

  3. J.M. Graber, S.C. Macdonald, D.E. Kass, A.E. Smith, H.A. Anderson, Public Health Rep. 122, 138 (2007)

    Google Scholar 

  4. S. Depayras, T. Kondakova, H. J. Heipieper, M. G. Feuilloley, N. Orange, C. Duclairoir-Poc, in Emerging pollutants - Some Strategies for the Quality Preservation of our Environment, ed. by S. Soloneski, M.L. Larramendy (IntechOpen, London, 2018) pp. 19–44. https://doi.org/10.5772/intechopen.75822

    Chapter  Google Scholar 

  5. B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699 (2004)

    Google Scholar 

  6. A. Dey, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206 (2018)

  7. S. Kladsomboon, C. Thippakorn, T. Seesaard, Sensors 18, 3189 (2018)

    Google Scholar 

  8. P. Kuberský, T. Syrový, A. Hamacek, S. Nešpůrek, J. Stejskal, Procedia Eng. 120, 614 (2015)

    Google Scholar 

  9. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469 (2010)

    Google Scholar 

  10. K. Rajkumar, R.T.R. Kumar, Fundamentals and sensing applications of 2D materials (Elsevier Ltd, New York, 2019), pp. 205–258

    Google Scholar 

  11. J.M. Raimond, M. Brune, Q. Computation, F. De Martini, C. Monroe, Science 306, 666 (2004)

    Google Scholar 

  12. P. Srivastava, N.K. Jaiswal, V. Sharma, Superlattices Microstruct. 73, 350 (2014)

    ADS  Google Scholar 

  13. W. Hu, N. Xia, X. Wu, Z. Li, J. Yang, Phys. Chem. Chem. Phys. 16, 6957 (2014)

    Google Scholar 

  14. L. Kou, T. Frauenheim, C. Chen, J. Phys. Chem. Lett. 5, 2675 (2014)

    Google Scholar 

  15. W. Xia, W. Hu, Z. Li, J. Yang, Phys. Chem. Chem. Phys. 16, 22495 (2014)

    Google Scholar 

  16. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)

    ADS  Google Scholar 

  17. A. Saffarzadeh, J. Appl. Phys. 107, 114309 (2010)

    ADS  Google Scholar 

  18. T. Ayari, C. Bishop, M.B. Jordan, S. Sundaram, X. Li, S. Alam, Y. Elgmili, G. Patriarche, P.L. Voss, J.P. Salvestrini, A. Ougazzaden, Sci. Rep. 7, 15212 (2017)

    ADS  Google Scholar 

  19. S. Yang, C. Jiang, S.H. Wei, Appl. Phys. Rev. 4, 021304 (2017)

    ADS  Google Scholar 

  20. Y. Zeng, S. Lin, D. Gu, X. Li, Nanomaterials 8, 851 (2018)

    ADS  Google Scholar 

  21. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 55, 1666 (2016)

    Google Scholar 

  22. D. Sun, Y. Luo, M. Debliquy, C. Zhang, Beilstein J. Nanotechnol. 9, 2832 (2018)

    Google Scholar 

  23. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8, 3137 (2008)

    ADS  Google Scholar 

  24. Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Nanotechnology 20, 185504 (2009)

    ADS  Google Scholar 

  25. J. Dai, J. Yuan, Phys. Rev. B Condens. Matter Mater. Phys. 81, 165414 (2010)

    ADS  Google Scholar 

  26. S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 54, 3112 (2015)

    Google Scholar 

  27. C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, F. Zamora, Angew. Chem. Int. Ed. 55, 14345 (2016)

    Google Scholar 

  28. X. Wang, J. Song, J. Qu, Angew. Chem. Int. Ed. 58, 1574 (2019)

    Google Scholar 

  29. P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D.A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, F. Zamora, Adv. Mater. 28, 6332 (2016)

    Google Scholar 

  30. O.Ü. Aktürk, V.O. Özçelik, S. Ciraci, Phys. Rev. B Condens. Matter Mater. Phys. 91, 235446 (2015)

    ADS  Google Scholar 

  31. P. Ares, J.J. Palacios, G. Abellán, J. Gómez-Herrero, F. Zamora, Adv. Mater. 30, 1703771 (2018)

    Google Scholar 

  32. H. Zeng, S. Zhang, W. Zhou, Y. Ma, J. Ji, B. Cai, S.A. Yang, Z. Zhu, Z. Chen, Nano Lett. 17, 3434 (2017)

    ADS  Google Scholar 

  33. Y. Wang, Y. Ding, Nanoscale Res. Lett. 10, 1 (2015)

    ADS  Google Scholar 

  34. V. Nagarajan, R. Chandiramouli, Phys. E Low-Dimens. Syst. Nanostruct. 97, 98 (2018)

    ADS  Google Scholar 

  35. Y. Song, X. Wang, W. Mi, NPJ Quantum Mater. 2, 1 (2017)

    ADS  Google Scholar 

  36. A.C.R. Souzal, M.J.S. Matos, M.S.C. Mazzoni, J. Phys. Condens. Matter 32, 165302 (2019)

    ADS  Google Scholar 

  37. S. Upadhyay, P. Srivastava, Mater. Chem. Phys. 241, 122381 (2020)

    Google Scholar 

  38. L.F. Yang, Y. Song, W.B. Mi, X.C. Wang, Appl. Phys. Lett. 109, 022103 (2016)

    ADS  Google Scholar 

  39. R. Meng, Y. Huang, Q. Yang, X. Chen, In: 2016 17th International Conference on Electronic Packaging Technology (ICEPT), (2016), pp. 741. https://doi.org/10.1109/ICEPT.2016.7583237

  40. R.S. Meng, M. Cai, J.K. Jiang, Q.H. Liang, X. Sun, Q. Yang, C.J. Tan, X.P. Chen, IEEE Electron Dev. Lett. 38, 134 (2017)

    ADS  Google Scholar 

  41. A.A. Kistanov, Y. Cai, D.R. Kripalani, K. Zhou, S.V. Dmitriev, Y.W. Zhang, J. Mater. Chem. C 6, 4308 (2018)

    Google Scholar 

  42. J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 7, 1 (2016)

    ADS  Google Scholar 

  43. Q. Wu, Y.J. Song, Chem. Commun. 54, 9671 (2018)

    Google Scholar 

  44. H.S. Tsai, C.W. Chen, C.H. Hsiao, H. Ouyang, J.H. Liang, Chem. Commun. 52, 8409 (2016)

    Google Scholar 

  45. Y. Shao, Z.L. Liu, C. Cheng, X. Wu, H. Liu, C. Liu, J.O. Wang, S.Y. Zhu, Y.Q. Wang, D.X. Shi, K. Ibrahim, J.T. Sun, Y.L. Wang, H.J. Gao, Nano Lett. 18, 2133 (2018)

    ADS  Google Scholar 

  46. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B Condens. Matter Mater. Phys. 65, 1654011 (2002)

    Google Scholar 

  47. J. Callaway, N.H. March, Sol. Stat. Phys. 38, 135 (1984)

    Google Scholar 

  48. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)

    ADS  Google Scholar 

  49. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  50. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  51. D.B. Wallace, An introduction to Hellmann–Feynman theory (University of Central Florida, Orlando, 2005)

    Google Scholar 

  52. S. Yang, Z. Wang, X. Dai, J. Xiao, M. Long, T. Chen, Coatings 9, 1 (2019)

    Google Scholar 

  53. R. Yogi, N.K. Jaiswal, Phys. E Low-Dimens. Syst. Nanostruct. 114, 113575 (2019)

    Google Scholar 

  54. H.M. Rai, S.K. Saxena, V. Mishra, R. Late, R. Kumar, P.R. Sagdeo, N.K. Jaiswal, P. Srivastava, Solid State Commun. 212, 19 (2015)

    ADS  Google Scholar 

  55. V. Sharma, P. Srivastava, N.K. Jaiswal, IEEE Trans. Electron Devices 65, 3893 (2018)

    ADS  Google Scholar 

  56. P. Srivastava, V. Sharma, N.K. Jaiswal, Microelectron. Eng. 146, 62 (2015)

    Google Scholar 

  57. A. García-Fuente, L.J. Gallego, A. Vega, J. Phys. Condens. Matter 26, 165302 (2014)

    Google Scholar 

  58. M.T. Ahmadi, Z. Johari, N.A. Amin, A.H. Fallahpour, R. Ismail, J. Nanomater. 2010, 753738 (2010)

    Google Scholar 

  59. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.L. Gu, W. Duan, J. Phys. Chem. C 112, 13442 (2008)

    Google Scholar 

  60. D. Zou, W. Zhao, C. Fang, B. Cui, D. Liu, Phys. Chem. Chem. Phys. 18, 11513 (2016)

    Google Scholar 

  61. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10, 227 (2015)

    ADS  Google Scholar 

  62. T.T. Li, C. He, W.X. Zhang, Appl. Surf. Sci. 427, 388 (2018)

    ADS  Google Scholar 

  63. S. Lei, R. Gao, X. Sun, S. Guo, H. Yu, N. Wan, F. Xu, J. Chen, Sci. Rep. 9, 12498 (2019)

    ADS  Google Scholar 

  64. P. Pyykkö, M. Atsumi, Chem. Eur. J. 15, 186 (2009)

    Google Scholar 

  65. S.M. Aghaei, M.M. Monshi, I. Calizo, RSC Adv. 6, 94417 (2016)

    Google Scholar 

  66. P. Srivastava, S. Dhar, N.K. Jaiswal, Graphene 2, 1 (2014)

    Google Scholar 

  67. H. Cui, G. Zhang, X. Zhang, J. Tang, Nanoscale Adv. 1, 772 (2019)

    ADS  Google Scholar 

  68. A. Yang, D. Wang, X. Wang, J. Chu, P. Lv, Y. Liu, M. Rong, IEEE Electron Dev. Lett. 38, 963 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to SERB-DST, New Delhi for the financial assistance (project no. EMR/2016/001337 dated 18/02/2017) and the Computational Nanoscience and Technology Laboratory (CNTL), ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior, India for the computational and infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Abhishek, Sharma, V. et al. First-principle insights of CO and NO detection via antimonene nanoribbons. Appl. Phys. A 126, 687 (2020). https://doi.org/10.1007/s00339-020-03863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03863-1

Keywords

Navigation