Skip to main content
Log in

Sensing behavior of various gas molecules adsorbed on Fe-doped and bare antimonene armchair nanoribbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

First-principles calculations, using density functional theory, have been studied to investigate the sensing of NO2, NO, N2, CO2, CO, O2, NH3 and SO2 gases on bare and Fe-doped antimonene armchair nanoribbons (Fe-doped ASbNRs). The sensing behaviors of these gases on bare and Fe-doped ASbNRs have been analyzed in terms of band structure, the density of states, adsorption energy, charge transfer, magnetic moments and I–V characteristics. We showed that doping the magnetic Fe atom increases the sensing ability of antimonene nanoribbon where the gas molecules are chemisorption on Fe-doped ASbNR. This chemisorption induces dramatic change in the adsorption energy and electronic structures, and injects magnetic moments into the nanoribbon system. The NO molecule depicts the tightest binding in the Fe-doped ASbNRs. Charge transfer analysis of adsorbates demonstrates that all gas molecules, except NO, NH3 and CO are electron donors to nanoribbon. Transport properties of Fe-doped ASbNRs transistor, display desirable I–V characteristics and spin filter efficiency for the NO2, N2, and NH3 gases. These two-dimensional systems may possess the potential in the promising application of gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the analysis of current study are available from the corresponding author on reasonable request.

References

  1. B. Adhikari, S. Majumdar, Polymers in sensor applications. Prog. Polym. Sci. 29, 699 (2004)

    Google Scholar 

  2. K.R. Nemade, Gas sensors based on inorganic materials: an overview. Sens. Transducers Int. Freq. Sens. Assoc. 132, 1 (2011)

    Google Scholar 

  3. A. Dey, Semiconductor metal oxide gas sensors. Mater. Sci. Eng. B 229, 206 (2018)

    Google Scholar 

  4. S.S. Varghese, S.H. Varghese, S. Swaminathan, K. Singh, V. Mittal, Two dimensional materials for sensing: graphene and beyond. Electronics 4, 651 (2015)

    Google Scholar 

  5. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469 (2010)

    ADS  Google Scholar 

  6. K. Rajkumar, R.T.R. Kumar, Fundamentals and sensing applications of 2D materials (Elsevier, 2019), p.205

    Google Scholar 

  7. S. Yang, C. Jiang, Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017)

    ADS  Google Scholar 

  8. Y. Zeng, S. Lin, D. Gu, X. Li, Two-dimensional nanomaterials for gas sensing applications: the role of theoretical calculations. Nanomaterials 8(10), 851 (2018)

    ADS  Google Scholar 

  9. F. Schedin, A. Geim, S.V. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652 (2007)

    ADS  Google Scholar 

  10. A. Saffarzadeh, Modeling of gas adsorption on graphene nanoribbons. J. Appl. Phys. 107, 114309 (2010)

    ADS  Google Scholar 

  11. D. Sun, Y. Luo, M. Debliquy, C. Zhang, Graphene-enhanced metal oxide gas sensors at room temperature: a review. Beilstein J. Nanotechnol. 9, 2832 (2018)

    Google Scholar 

  12. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P. Sheehan, Reduced graphene oxide molecular sensors. Nano Lett. 8, 3137 (2008)

    ADS  Google Scholar 

  13. Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.L. Zhang, Y. Peng, Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18), 185504 (2009)

    ADS  Google Scholar 

  14. J. Dai, J. Yuan, Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys. Rev. B 81, 165414 (2010)

    ADS  Google Scholar 

  15. S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem. Int. Ed. 54, 3155 (2015)

    ADS  Google Scholar 

  16. S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew. Chem. 128, 1698 (2016)

    ADS  Google Scholar 

  17. P. Ares, F. Aguilar-Galindo, D. Rodriguez-San-Miguel, D.A. Aldave, S. DiazTendero, M. Alcami, F. Martin, J. Gomez-Herrero, F. Zamora, Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 28, 6332 (2016)

    Google Scholar 

  18. C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, F. Zamora, Few-layer antimonene by liquid-phase exfoliation. Angew. Chem. Int. Ed. 55, 14345 (2016)

    Google Scholar 

  19. O.Ü. Aktürk, V.O. Özçelik, S. Ciraci, Single-layer crystalline phases of antimony: antimonenes. Phys. Rev. B 91, 235446 (2015)

    ADS  Google Scholar 

  20. Y. Wang, Y. Ding, Electronic structure and carrier mobilities of arsenene and antimonene nanoribbons: a first-principle study. Nanoscale Res. Lett. 10, 254 (2015)

    ADS  Google Scholar 

  21. V. Nagarajan, R. Chandiramouli, Sensing studies of DDT and Toxaphene molecules using chemi-resistive β-antimonene nanotubes based on first-principles insights. Chem. Phys. Lett. 757, 137895 (2020)

    Google Scholar 

  22. Y. Song, X. Wang, W. Mi, Spin splitting and electric field modulated electron-hole pockets in antimonene nanoribbons. NPJ Quantum Mater 2, 15 (2017)

    ADS  Google Scholar 

  23. A.C.R. Souzal, M.J.S. Matos, M.S.C. Mazzoni, Oxidation-driven formation of precisely ordered antimonene nanoribbons. J. Phys.: Condens. Matter. 32, 165302–888 (2019)

    ADS  Google Scholar 

  24. A.J.S. Impeng, P. Maitarad, N. Kungwan, D. Zhang, L. Shi, S. Namuangruk, A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: a first principle study. Appl. Surf. Sci. 473, 820 (2018)

    ADS  Google Scholar 

  25. E. Salih, A.I. Ayesh, Enhancing the sensing performance of zigzag graphene nanoribbon to detect NO, NO2, and NH3 Gases. Sensors 20, 3932 (2020)

    ADS  Google Scholar 

  26. M. Ali, S. Khan, F. Awwad, N. Tit, High gas-sensing selectivity of bilaterally edge-doped graphene nanoribbons towards detecting NO2, O2 and SO3 gas molecules: Ab-initio investigation. Appl. Surf. Sci. 514, 145866 (2020)

    Google Scholar 

  27. R. Deji, A. Verma, B.C. Choudhary, R.K. Sharma, New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: a DFT approach. J. Mol. Graph. Model. 111, 108109 (2022)

    Google Scholar 

  28. R. Deji, B.C. Choudhary, R.K. Sharma, Hydrogen sulfide gas sensor using osmium doped graphene nanoribbon: an insights from DFT study. Mater. Lett. 306, 130986 (2022)

    Google Scholar 

  29. G.K. Walia, D.K.K. Randhawa, First-principles investigation on defect-induced silicene nanoribbons—a superior media for sensing NH3, NO2 and NO gas molecules. Surf. Sci. 670, 33–43 (2018)

    ADS  Google Scholar 

  30. S. Su, J. Gong, Z.-Q. Fan, Selective adsorption of harmful molecules on zigzag phosphorene nanoribbon for sensing applications. Physica E 117, 113838 (2020)

    Google Scholar 

  31. P. Sirvastava, Abhishek, V. Sharma, N.K. Jaiswal, First principle insights of CO and NO detection via antimonene nanoribbons. Appl. Phys. A 126, 668 (2020)

    Google Scholar 

  32. W. Hui, G. Chang, W. Gao, Exploring the electronic and magnetic properties of noble metal (Pd, Pt, Au) adsorbed MoSe2 monolayers and their performance towards sensing gas molecules. Physica E 122, 114167 (2020)

    Google Scholar 

  33. P. Sirvastava, Abhishek, V. Sharma, N.K. Jaiswal, First-principles investigation of CO2 and NH3 adsorption on antimonene nanoribbons. Mater. Today Proc. 28, 65 (2020)

    Google Scholar 

  34. G.-X. Chen, R.-Y. Du, D.-D. Wan, Z. Chen, S. Liu, J.-M. Zhang, Adsorption of NO gas molecule on the vacancy defected and transition metal doped antimonene: a first-principles study. Vacuum 207, 111654 (2023)

    ADS  Google Scholar 

  35. M.I. Khan, M. Hassan, A. Majid, M. Shakil, M. Rafique, DFT perspective of gas sensing properties of Fe-decorated monolayer antimonene. Appl. Surf. Sci. 616, 156520 (2023)

    Google Scholar 

  36. F. Safari, M. Moradinasab, M. Fathipour, H. Kosina, Adsorption of the NH3, NO, NO2, CO2, and CO gas molecules on blue phosphorene: a first-principles study. Appl. Surf. Sci. 464, 153 (2019)

    ADS  Google Scholar 

  37. C. Jin, X. Tang, X. Tan, S.C. Smith, Y. Dai, L. Kou, A Janus MoSSe monolayer: a superior and strain sensitive gas sensing material. J. Mater. Chem. A 496, 1099 (2019)

    Google Scholar 

  38. “Atomistix ToolKit, version 2016.04, Quantum Wise A/S. http://www.quantumwise.com”. Accessed 2016

  39. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  40. S.B. Touski, M.P. López-Sancho, Effects of vertical electric field and charged impurities on the spin-polarized transport of β-antimonene armchair nanoribbons. Phys. Rev. B 103, 115433 (2021)

    ADS  Google Scholar 

  41. R. Deji, A. Verma, N. Kaur, B.C. Choudhary, R.K. Sharma, Density functional theory study of carbon monoxide adsorption on transition metal doped armchair graphene nanoribbon. Mater. Today Proc. 54, 771 (2022)

    Google Scholar 

  42. D. Zhang, M. Long, X. Zhang, F. Ouyang, M. Li, H. Xu, Designing of spin-filtering devices in zigzag graphene nanoribbons heterojunctions by asymmetric hydrogenation and B-N doping. J. Appl. Phys. 117, 014311 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection was performed by SHK, and analysis were performed by Jamal Barvestani and Bahar Meshginqalam. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jamal Barvestani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashani, S.H., Barvestani, J. & Meshginqalam, B. Sensing behavior of various gas molecules adsorbed on Fe-doped and bare antimonene armchair nanoribbon. Appl. Phys. A 130, 63 (2024). https://doi.org/10.1007/s00339-023-07234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07234-4

Keywords

Navigation