Skip to main content
Log in

Bandgap energy of the O-rich ZnTexO1-x (0 < x ≤ 0.35)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Model is set up to provide a depiction for the bandgap energy of the O-rich ZnTexO1-x with wurtzite structure. A better agreement between the result obtained by the model and the experimental data than the result reported in other reference can be found. It is also found that the equation with a bowing term should be modified when it is used to describe the bandgap energy of ZnTexO1-x. The weak composition dependence of the Γ VBM (valence band maximum) in the O-rich range is due to two factors. One is the localized effect of the Te level. The other is the weak anticrossing interaction between the Te level and the Γ VBM of ZnO. The influence of the localized effect of the O level on the Γ CBM (conduction band minimum) is weaker than that of the Te level on the Γ VBM in ZnTexO1-x. In addition, it is found that the Γ CBM of ZnTexO1-x depending on O content in the dilute oxygen range is much stronger than the Γ VBM of ZnTexO1-x depending on Te content in the dilute Te range because the impurity–host interaction in the dilute Te range is much weaker than that in the dilute O range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.A. Mayer, D.T. Speaks, K.M. Yu, S.S. Mao, E.E. Haller, W. Walukiewicz, Appl Phys Lett 97, 022104 (2010)

    Article  ADS  Google Scholar 

  2. D.U. Lee, S.P. Kim, K.S. Lee, S.W. Pak, E.K. Kim, Appl Phys Lett 103, 263901 (2013)

    Article  ADS  Google Scholar 

  3. C.Y. Moon, S.H. Wei, Y.Z. Zhu, G.D. Chen, Phys Rev B 74, 233202 (2006)

    Article  ADS  Google Scholar 

  4. T. Tanaka, R. Reis, M.J. Jaquez, O.D. Dubon, S.S. Mao, K.M. Yu, and Wladek Walukiewicz. Appl Phys Lett 100, 011905 (2012)

    Article  ADS  Google Scholar 

  5. T. Tanaka, M. Miyabara, Y. Nagao, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, Appl Phys Lett 102, 052111 (2013)

    Article  ADS  Google Scholar 

  6. T. Tanaka, K.M. Yu, A.X. Levander, O.D. Dubon, L.A. Reichertz, N. Lopez, M. Nishio, and Wladek Walukiewicz. Jpn J Appl Phys 50, 082304 (2011)

    ADS  Google Scholar 

  7. M. Ting, M. Jaquez, I.D. Sharp, Y. Ye, N. Segercrantz, R. Greif, S.S. Mao, C.P. Liu, K.M. Yu, W. Walukiewicz, Appl Phys Lett 106, 092101 (2015)

    Article  ADS  Google Scholar 

  8. M. Ting, M. Jaquez, I.D. Sharp, Y. Ye, N. Segercrantz, R. Greif, S.S. Mao, C.P. Liu, K.M. Yu, W. Walukiewicz, Appl Phys Lett 125, 0155702 (2019)

    Google Scholar 

  9. J. Li, S.H. Wei, Phys Rev B 73, 04120 (2006)

    Google Scholar 

  10. R. Sahu, K. Dileep, D.S. Negi, K.K. Nagaraja, R. Datta, Phys Status Solidi B 252, 1743 (2015)

    Article  ADS  Google Scholar 

  11. C.Z. Zhao, M.M. Zhu, S.Y. Sun, Y. Guo, Appl Phys Express 12, 081004 (2019)

    Article  ADS  Google Scholar 

  12. C.Z. Zhao, X.T. Li, X.D. Sun, S.S. Wang, J. Wang, J Electron Mater 48, 1599 (2019)

    Article  ADS  Google Scholar 

  13. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, K.Q. Lu, J. Wang, J Electron Mater 47, 3897 (2018)

    Article  ADS  Google Scholar 

  14. C.Z. Zhao, N.N. Li, T. Wei, C.X. Tang, K.Q. Lu, Appl Phys Lett 100, 142112 (2012)

    Article  ADS  Google Scholar 

  15. J. Zhu, F. Liu, G.B. Stringfellow, S.-H. Wei, Phys Rev Lett 105, 195503 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (61874077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan‑Zhen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Huang, Y., Sun, XD. et al. Bandgap energy of the O-rich ZnTexO1-x (0 < x ≤ 0.35). Appl. Phys. A 126, 656 (2020). https://doi.org/10.1007/s00339-020-03861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03861-3

Keywords

Navigation