Skip to main content
Log in

Acoustofluidic waveguides for fabrication of localized polymeric microstructure arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polymer-based substrate with patterned microstructures has been widely utilized for the development of cell chip in tissue engineering and/or flexible sensors in robotics. The key challenge is to fabricate the polymer-based substrate with the localized patterned microstructures. In this study, we presented a method to fabricate localized microstructures by standing surface acoustic wave (SSAW) and user-defined waveguides. To investigate the working mechanism, we developed a 3D numerical model to analyze the induced acoustic pressure distribution and final generated microstructures. Results demonstrated that the utilized waveguide could localize the acoustic pressure field in a specified region within the prepared photosensitive fluid film based on Rayleigh’s radiation theory and capillary wave motion. By adjusting the SSAW driven modes and using different shaped waveguides, both numerical modeling and experimental tests showed that the localized microstructures can form on the liquid film and then successfully fabricated using ultraviolet (UV) solidification. Therefore, our developed method by using the SSAW and waveguide provides a promising alternative process to fabricate the polymer-based microstructure with localized patterns, and the fabricated polymer-based microstructures could be used for the development of flexible sensors, actuator, and/or soft robotics in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Dai, Y. Zhu, Y. Gu, Z. Du, Appl. Phys. A 125, 138 (2019)

    Article  ADS  Google Scholar 

  2. T. Hu, Y. Wu, X. Zhao, L. Wang, L. Bi, P.X. Ma, B. Guo, Chem. Eng. J. 366, 208–222 (2019)

    Article  Google Scholar 

  3. S. Chun, Y. Choi, D.I. Suh, G.Y. Bae, S. Hyun, W. Park, Nanoscale 9, 10248 (2017)

    Article  Google Scholar 

  4. G. Liang, Y. Wang, D. Mei, K. Xi, Z. Chen, J. Micromech. Microeng. 26, 045007 (2016)

    Article  ADS  Google Scholar 

  5. H.O.S. Yadav, A. Kuo, S. Urata, W. Shinoda, Langmuir 35, 14316–14323 (2019)

    Article  Google Scholar 

  6. A.E. Kovalev, M. Varenberg, S.N. Gorb, Soft Matter 8, 7560 (2012)

    Article  ADS  Google Scholar 

  7. S. Park, J.H. Moon, S. Lee, J. Shim, S. Yang, Langmuir 26, 1468–1472 (2010)

    Article  Google Scholar 

  8. Y. Wan, Z. Qiu, Y. Hong, Y. Wang, J. Zhang, Q. Liu, Z. Wu, C.F. Guo, Adv. Electron. Mater. 4, 1700586 (2018)

    Article  Google Scholar 

  9. K. Obata, S. Slobin, A. Schonewille, A. Hohnholz, C. Unger, J. Koch, O. Suttmann, L. Overmeyer, Appl. Phys. A 123, 495 (2017)

    Article  ADS  Google Scholar 

  10. S. Chu, T.E. Winkler, A.D. Brown, J.N. Culve, R. Ghodssi, Langmuir 34, 1725–1732 (2018)

    Article  Google Scholar 

  11. J. Liu, L. Li, H. Suo, M. Yan, J. Yin, J. Fu, Mater. Des. 171, 107708 (2019)

    Article  Google Scholar 

  12. D. Xue, J. Zhang, Y. Wang, D. Mei, A.C.S. Biomater, Sci. Eng. 5, 4825–4833 (2019)

    Google Scholar 

  13. D. Mei, D. Xue, Y. Wang, S. Chen, Appl. Phys. Lett. 108, 241911 (2016)

    Article  ADS  Google Scholar 

  14. F. Guo, Z. Mao, Y. Chen, Z. Xie, J.P. Lata, P. Li, L. Ren, J. Liu, J. Yang, M. Dao, S. Suresh, T.J. Huang, Proc. Natl. Acad. Sci. USA 113, 1522–1527 (2016)

    Article  ADS  Google Scholar 

  15. A. Qi, L.Y. Yeo, J.R. Friend, Phys. Fluids 20, 74103 (2008)

    Article  Google Scholar 

  16. M.K. Tan, J.R. Friend, O.K. Matar, L.Y. Yeo, Phys. Fluids 22, 112112 (2010)

    Article  ADS  Google Scholar 

  17. Y. Wang, D. Xue, D. Mei, ASME J. Micro Nano Manuf. 6, 21002–21009 (2018)

    Article  Google Scholar 

  18. Y. Wang, Z. Yu, D. Mei, D. Xue, Procedia CIRP 65, 279–283 (2017)

    Article  Google Scholar 

  19. B.R. Ware, M.J. Durham, C.P. Monckton, S.R. Khetani, Cells Cell. Mol. Gastroenterol. Hepatol. 5, 187–207 (2018)

    Article  Google Scholar 

  20. S.R. Khetani, S.N. Bhatia, Nat. Biotechnol. 26, 120–126 (2008)

    Article  Google Scholar 

  21. G. Liang, D. Mei, Y. Wang, Z. Chen, IEEE Sens. J. 14, 4095–4103 (2014)

    Article  ADS  Google Scholar 

  22. Y. Bian, F. Guo, S. Yang, Z. Mao, H. Bachman, S. Tang, L. Ren, B. Zhang, J. Gong, X. Guo, T.J. Huang, Microfluid Nanofluid 21, 132 (2016)

    Article  Google Scholar 

  23. D.J. Collins, R. O’Rorke, C. Devendran, Z. Ma, J. Han, A. Neild, Y. Ai, Phys. Rev. Lett. 120, 074502 (2018)

    Article  ADS  Google Scholar 

  24. H. Bruus, Lab Chip 12, 20–28 (2012)

    Article  Google Scholar 

  25. C. Han, Y. Wang, D. Mei, Proceedings of the ASME 2019 international manufacturing science and engineering conference, Erie, Pennsylvania, USA (2019).

  26. Y. Wang, C. Han, D. Mei, Langmuir 35, 11225–11231 (2019)

    Article  Google Scholar 

  27. R. Courant, K.O. Friedrichs, H. Lewy, IBM J. 11, 215–234 (1956)

    Article  ADS  Google Scholar 

  28. Z. Ma, D.J. Collins, Y. Ai, Anal. Chem. 88, 5316–5323 (2016)

    Article  Google Scholar 

  29. J. Dual, D. Mller, Lab Chip 12, 506–514 (2012)

    Article  Google Scholar 

  30. L. Schmid, D.A. Weitz, T. Franke, Lab Chip 14, 3710–3718 (2014)

    Article  Google Scholar 

  31. H. Bruus, Lab Chip 11, 3742–3751 (2011)

    Article  Google Scholar 

  32. C. Devendran, T. Albrecht, J. Brenker, T. Alan, A. Neild, Lab Chip 16, 3756–3766 (2016)

    Article  Google Scholar 

  33. L.E. Kinsler, J.R. Friend, O.K. Matar, L.Y. Yeo, Fundamentals of acoustics (Hamilton Press, New York, 2010)

    Google Scholar 

  34. C. Ramadas, K. Balasubramaniam, A. Hood, M. Joshi, C.V. Krishnamurthy, Compos. Struct. 93, 2020–2025 (2011)

    Article  Google Scholar 

  35. M. Ohkawa, K. Murata, T. Sato, Proceedings of SPIE, San Francisco, California, United States (2012)

  36. Sigma, PEGDA material properties. https://www.sigmaaldrich.com/catalog/product/aldrich/475629?lang=en&region=US. Accessed 30 May 2020

  37. N. Bertin, H. Chraibi, R. Wunenburger, J.P. Delville, E. Brasselet, Phys. Rev. Lett. 109, 244304 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1809220), Zhejiang Provincial Funds for Distinguished Young Scientists of China (LR19E050001), Open Fund Project of Zhijiang Laboratory (2019MC0AB02), and the Fund for Creative Research Groups of National Natural Science Foundation of China (51821093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Wang, Y. & Mei, D. Acoustofluidic waveguides for fabrication of localized polymeric microstructure arrays. Appl. Phys. A 126, 651 (2020). https://doi.org/10.1007/s00339-020-03860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03860-4

Keywords

Navigation