Skip to main content
Log in

Structural, dielectric, thermal and electrical characteristics of lead-free double perovskite: BiHoZnCeO6

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Letter to this article was published on 26 June 2023

Abstract

BiHoZnCeO6, the double pervoskite was synthesized using a cost-effective solid-state reaction method. The structural evaluation of the double pervoskite, when carried out by using the X-ray diffraction pattern suggested an orthorhombic crystal geometry with non- centrosymmetry space group Pca21. The microstructural investigation on the above material is carried out with the help of a scanning electron micrograph. These SEM micrographs showed that the grains of varying sizes (0.5–2 μm) are uniformly distributed. The study of dielectric characteristics as a function of temperature and frequency revealed some interesting characteristics of the material. One such observation is the identification of ferroelectric transition temperature at 435 °C. The strong anomaly at 435 °C and the ferroelectric behavior of the material is further validated by the study of spontaneous polarization (the hysteresis loop). In the present communication, the detailed microstructural, dielectric (dielectric constant, tangent loss, and electric polarization), thermal and electrical (impedance, electrical modulus, conductivity) studies on bismuth holmium zinc ceranate is presented along with the existence of ferroelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11

Similar content being viewed by others

References

  1. J. Valasek, Piezo-electric and allied phenomena in rochelle salt. Phys. Rev. 17, 475–481 (1921). https://doi.org/10.1103/PhysRev.17.475

    Article  ADS  Google Scholar 

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005). https://doi.org/10.1088/0022-3727/38/8/r01

    Article  ADS  Google Scholar 

  3. E.V. Colla, E.Y. Koroleva, N.M. Okuneva, S.B. Vakhrushev, Long-time relaxation of the dielectric response in lead magnoniobate. Phys. Rev. Lett. 74, 1681–1684 (1995). https://doi.org/10.1103/PhysRevLett.74.1681

    Article  ADS  Google Scholar 

  4. W. Prellier, M.P. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter. 17, R803–R832 (2005). https://doi.org/10.1088/0953-8984/17/30/r01

    Article  ADS  Google Scholar 

  5. A. Levstik, Z. Kutnjak, C. Filipič, R. Pirc, Glassy freezing in relaxor ferroelectric lead magnesium niobate. Phys. Rev. B 57, 11204–11211 (1998). https://doi.org/10.1103/PhysRevB.57.11204

    Article  ADS  Google Scholar 

  6. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003–8006 (1992). https://doi.org/10.1103/PhysRevB.46.8003

    Article  ADS  Google Scholar 

  7. S.K.C. Chitra, Structural, dielectric and ferroelectric properties of dysprosium doped (Ba0.7Ca 0.3)(Ti0.92 Sn0.08)O3 lead free ceramics. Ferroelectrics 518, 1–10 (2017). https://doi.org/10.1080/00150193.2017.1360115

    Article  ADS  Google Scholar 

  8. L. Chu, W. Ahmad, W. Liu et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6

    Article  ADS  Google Scholar 

  9. G.H. Ryu, A. Hussain, M.H. Lee et al., Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics. J. Eur. Ceram. Soc. 38, 4414–4421 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.05.032

    Article  Google Scholar 

  10. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magneto-electric characteristics of double perovskite: BiCaFeCeO6. Chin. J. Phys. 59, 231–241 (2019). https://doi.org/10.1016/j.cjph.2019.03.009

    Article  Google Scholar 

  11. S.E. Nunes, C.-H. Wang, K. So et al., Bismuth zinc vanadate, BiZn2VO6: New crystal structure type and electronic structure. J. Solid State Chem. 222, 12–17 (2015). https://doi.org/10.1016/j.jssc.2014.10.036

    Article  ADS  Google Scholar 

  12. P.G.R. Achary, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and dielectric properties of double perovskites: BiHoZnZrO6 and BiHoCuTiO6. J. Mater. Sci. Mater. Electron (2018). https://doi.org/10.1007/s10854-018-8667-2

    Article  Google Scholar 

  13. V. Senthil, T. Badapanda, A. Chithambararaj et al., Impedance spectroscopy and photocatalysis water splitting for hydrogen production with cerium modified SrBi2Ta2O9 ferroelectrics. Int. J. Hydrogen Energy 41, 22856–22865 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.139

    Article  Google Scholar 

  14. V. Senthil, T. Badapanda, A. Chandrabose, S. Panigrahi, Dielectric and ferroelectric behavior of cerium modified SrBi2Ta2O9 ceramic. Mater. Lett. 159, 138–141 (2015). https://doi.org/10.1016/j.matlet.2015.06.093

    Article  Google Scholar 

  15. N.M. Khusayfan, Ferroelectric properties of Ce doped hydroxyapatite nanoceramics. J. Alloys Compd. 685, 350–354 (2016). https://doi.org/10.1016/j.jallcom.2016.05.273

    Article  Google Scholar 

  16. S. Liu, L. Zhang, J. Wang et al., Rapid stability of ferroelectric polarization in the Ca, Ce hybrid doped BaTiO3 ceramics. Sci. Rep. 6, 38354 (2016). https://doi.org/10.1038/srep38354

    Article  ADS  Google Scholar 

  17. M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001). https://doi.org/10.1021/cr980129f

    Article  Google Scholar 

  18. V. Stournari, S.F.P. ten Donkelaar, J. Malzbender et al., Creep behavior of perovskite-type oxides Ba0.5Sr0.5(Co0.8Fe0.2)1−xZrxO3−δ. J. Eur. Ceram. Soc. 35, 1841–1846 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.01.005

    Article  Google Scholar 

  19. X. Liu, R. Hong, C. Tian, Tolerance factor and the stability discussion of ABO 3-type ilmenite. J. Mater. Sci. Mater. Electron 20, 323 (2009)

    Article  Google Scholar 

  20. K.A. Razak, W.C. Song, C.Y. Ng, Properties of Ce-doped Bi0.5Na0.5TiO3 synthesized using the soft combustion method. Proced. Chem. 19, 816–821 (2016). https://doi.org/10.1016/j.proche.2016.03.107

    Article  Google Scholar 

  21. J.D. Bobić, B.D. StojanoviĆ, C.O. Paiva-Santos et al., Structure and properties of barium bismuth titanate prepared by mechanochemical synthesis. Ferroelectrics 368, 145–153 (2008). https://doi.org/10.1080/00150190802368305

    Article  ADS  Google Scholar 

  22. A. Abbassi, H. Zaari, C. Azahaf et al., Spontaneous polarization and magnetic investigation of BiXO3 (X=Co, Mn, Fe, V, Zn): first-principle study. J. Supercond. Nov. Magn. 29, 487–491 (2016). https://doi.org/10.1007/s10948-015-3315-z

    Article  Google Scholar 

  23. H. Liu, X. Yang, A brief review on perovskite multiferroics. Ferroelectrics 507, 69–85 (2017). https://doi.org/10.1080/00150193.2017.1283171

    Article  ADS  Google Scholar 

  24. Y. Markandeya, Y.S. Reddy, S. Bale et al., Characterization and thermal expansion of Sr2FexMo2−xO6 double perovskites. Bull. Mater. Sci. 38, 1603–1608 (2015). https://doi.org/10.1007/s12034-015-0972-2

    Article  Google Scholar 

  25. S. Khetre, A. Chopade, C. Khilare et al., Electrical and dielectric properties of nanocrystalline LaCrO3. J. Mater. Sci. Mater. Electron (2013). https://doi.org/10.1007/s10854-013-1411-z

    Article  Google Scholar 

  26. D.R. Patil, S.A. Lokare, R.S. Devan et al., Dielectric properties and magnetoelectric effect of (x)NiFe2O4+(1–x)Ba0.8Sr0.2TiO3 composites. J. Phys. Chem. Solids 68, 1522–1526 (2007). https://doi.org/10.1016/j.jpcs.2007.03.029

    Article  ADS  Google Scholar 

  27. W. Wan, J. Luo, C. Huang et al., Calcium copper titanate/polyurethane composite films with high dielectric constant, low dielectric loss and super flexibility. Ceram. Int. 44, 5086–5092 (2018). https://doi.org/10.1016/j.ceramint.2017.12.108

    Article  Google Scholar 

  28. C. Rayssi, S. El Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018). https://doi.org/10.1039/C8RA00794B

    Article  ADS  Google Scholar 

  29. W.Q. Cao, L. Yang, M.M. Ismail, P. Feng, Dielectric and ferroelectric properties of Ba0.8Sr0.2Ti1−5x/4NbxO3 ceramics. Ceram. Int. 37, 1587 (2011). https://doi.org/10.1016/j.ceramint.2011.01.031

    Article  Google Scholar 

  30. D. Guyomar, G. Sebald, B. Guiffard, L. Seveyrat, Ferroelectric electrocaloric conversion in 0.75(PbMg1/3Nb2/3O3)-0.25(PbTiO3) ceramics. J. Phys. D Appl. Phys. 39, 4491–4496 (2006). https://doi.org/10.1088/0022-3727/39/20/029

    Article  ADS  Google Scholar 

  31. K. Yao, S. Chen, M. Rahimabady et al., Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1968–1974 (2011). https://doi.org/10.1109/TUFFC.2011.2039

    Article  Google Scholar 

  32. D.-W. Fu, H.-L. Cai, Y. Liu et al., Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013). https://doi.org/10.1126/science.1229675

    Article  ADS  Google Scholar 

  33. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, TbFeO3 ceramic: an exciting colossal dielectric with ferroelectric properties. Phys. Status Solidi Basic Res. 1900236, 1–14 (2019). https://doi.org/10.1002/pssb.201900236

    Article  Google Scholar 

  34. A. Mukherjee, M. Banerjee, S. Basu et al., Enhanced magnetic and electrical properties of y and Mn co-doped BiFeO3 nanoparticles. Phys. B Condens. Matter. 448, 199–203 (2014). https://doi.org/10.1016/j.physb.2014.03.082

    Article  ADS  Google Scholar 

  35. S. Nagar, K.V. Rao, L. Belova et al., Room temperature ferromagnetism and lack of ferroelectricity in thin films of “Biferroic?” YbCrO3. Mater. Res. Soc. Symp. Proc. 1183, 163–168 (2009). https://doi.org/10.1557/proc-1161-i07-04

    Article  Google Scholar 

  36. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D Appl. Phys. 32, R57 (1999)

    Article  ADS  Google Scholar 

  37. S. Hajra, M. Sahu, V. Purohit, R.N.P. Choudhary, Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic:0.6Bi(Fe0.98Ga0.02)O3–0.4BaTiO3. Heliyon 5, e01654 (2019). https://doi.org/10.1016/J.HELIYON.2019.E01654

    Article  Google Scholar 

  38. J. Ross Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147–149 (1984). https://doi.org/10.1016/0167-2738(84)90049-3

    Article  Google Scholar 

  39. R. Ranjan, R. Kumar, N. Kumar et al., Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509, 6388–6394 (2011). https://doi.org/10.1016/j.jallcom.2011.03.003

    Article  Google Scholar 

  40. S. Terny, P.E. di Prátula, J. de Frutos, M.A. Frechero, Dielectric relaxation of vanadium–molybdenum tellurite glasses modified by alkaline-earth oxides. J. Non Cryst. Solids 444, 49–54 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.041

    Article  ADS  Google Scholar 

  41. M. Usman, K. Rasool, S.S. Batool et al., Humidity effect on transport properties of titanium dioxide nanoparticles. J. Mater. Sci. Technol. 30, 748–752 (2014). https://doi.org/10.1016/j.jmst.2013.12.002

    Article  Google Scholar 

  42. S. Sasaki, C.T. Prewitt, J.D. Bass, W.A. Schulze, Orthorhombic perovskite CaTiO${\sb 3}$ and CdTiO${\sb 3}$: structure and space group. Acta Crystallogr. Sect. C 43, 1668–1674 (1987). https://doi.org/10.1107/S0108270187090620

    Article  Google Scholar 

  43. K. Parida, R.N.P. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized {CaCu}3Ti4O12 dielectric ceramics. Mater. Res. Express 4, 76302 (2017). https://doi.org/10.1088/2053-1591/aa76cd

    Article  Google Scholar 

  44. M.A.E.-F. Gabal, Y.M. Al Angari, A.Y. Obaid, Structural characterization and activation energy of NiTiO3 nanopowders prepared by the co-precipitation and impregnation with calcinations. Comptes Rendus Chim 16, 704–711 (2013). https://doi.org/10.1016/j.crci.2013.01.009

    Article  Google Scholar 

  45. A. Belboukhari, E. Choukri, Y. Gagou et al., Investigation on relaxation and conduction mechanism in Pb0.75K0.5Nb2O6 new ferroelectric ceramic. Superlattices Microstruct. 71, 7–22 (2014). https://doi.org/10.1016/j.spmi.2014.03.031

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work is funded by the UGC-DAE-CSR, Mumbai (CRS-M-297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ganga Raju Achary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhy, M., Dehury, S.K., Choudhary, R. et al. Structural, dielectric, thermal and electrical characteristics of lead-free double perovskite: BiHoZnCeO6. Appl. Phys. A 126, 655 (2020). https://doi.org/10.1007/s00339-020-03852-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03852-4

Keywords

Navigation