Skip to main content
Log in

A comparison study regarding Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes: current/impedance–voltage (I/ZV) characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes were produced using a p-type silicon wafer with 10 Ω cm resistivity to determine the polymer interlayer effects on device characteristics. To assess whether carbon nanofiber–PVP interlayer is beneficial for electrical performance, the current–voltage (IV) and the impedance–voltage (ZV) measurements were performed in wide range of voltage. Thus, electrical parameters such as series resistance, barrier height, and ideality factor were derived from the forward bias Ln (IF)–VF and Cheung’s functions, so that they are compared and voltage dependence of them is explored. Later, the values of intercept voltage, width of depletion layer, doping acceptor atom concentration, and barrier height were also extracted from C−2V data at 1 MHz and then results were compared with each other. The surface states and their energy profile were also extracted from the IFVF characteristics by considering barrier height (BH) and n is voltage dependent as well. Experimental results indicate that the carbon nanofiber–PVP interlayer decreases surface states (Nss), series resistance (Rs) and leakage current, whereas it increases rectifying ratio and shunt resistance. Hence, such polymeric interlayer material forms an interesting alternative to conventional oxide layer due to some advantages of polymers such as desirably low values of cost, weight, and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, J. Appl. Polym. Sci. 131, 1 (2014)

    Google Scholar 

  2. M. Sharma, S.K. Tripathi, Appl. Phys. A Mater. Sci. Process. 113, 491 (2013)

    Article  ADS  Google Scholar 

  3. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş. Altındal, J. Electron. Mater. 47, 6945 (2018)

    Article  ADS  Google Scholar 

  4. S.A. Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci. Mater. Electron. 28, 14040 (2017)

    Article  Google Scholar 

  5. M.H. Al-Dharob, H.E. Lapa, A. Kökce, A.F. Özdemir, D.A. Aldemir, Ş. Altındal, Mater. Sci. Semicond. Process. 85, 98 (2018)

    Article  Google Scholar 

  6. M. Gökçen, T. Tunç, Ş. Altındal, İ. Uslu, Mater. Sci. Eng. B 177, 416 (2012)

    Article  Google Scholar 

  7. M. Yildirim, M. Gökçen, Bull. Mater. Sci. 37, 257 (2014)

    Article  Google Scholar 

  8. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.H. Kil, C.J. Choi, J. Electron. Mater. 43, 3499 (2014)

    Article  ADS  Google Scholar 

  9. S. Alptekin, Ş. Altındal, J. Mater. Sci. Mater. Electron. 30, 6491 (2019)

    Article  Google Scholar 

  10. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoğlu, Ş. Altındal, Compos. B Eng. 57, 25 (2014)

    Article  Google Scholar 

  11. S. Altındal Yerişkin, J. Sci. Technol. 9, 835 (2019)

    Google Scholar 

  12. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Willey, New York, 1981)

    Google Scholar 

  13. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  14. H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971)

    Article  ADS  Google Scholar 

  15. E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  16. Y. Badali, A. Nikravan, Ş. Altındal, İ. Uslu, J. Electron. Mater. 47, 3510 (2018)

    Article  ADS  Google Scholar 

  17. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  18. V.R. Reddy, Thin Solid Films 556, 300 (2014)

    Article  ADS  Google Scholar 

  19. H.G. Çetinkaya, Ö. Sevgili, Ş. Altındal, Phys. B 560, 91 (2019)

    Article  ADS  Google Scholar 

  20. R. Padma, V.R. Reddy, AIP Conf. Proc. 1665, 120033 (2015)

    Article  Google Scholar 

  21. S.O. Tan, H. Tecimer, O. Cicek, IEEE Trans. Electron Devices 64, 984 (2017)

    Article  ADS  Google Scholar 

  22. S. Demirezen, S. Altındal Yerişkin, Polym. Bull. 77, 49 (2020)

    Article  Google Scholar 

  23. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  24. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  25. K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986)

    Article  ADS  Google Scholar 

  26. H. Schroeder, J. Appl. Phys. 117, 215103 (2015)

    Article  ADS  Google Scholar 

  27. J.G. Simmons, Phys. Rev. 155, 657 (1967)

    Article  ADS  Google Scholar 

  28. E. Marıl, A. Kaya, S. Koçyiğit, Ş. Altındal, Mater. Sci. Semicond. Process. 31, 256 (2015)

    Article  Google Scholar 

  29. A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, Phys. B 576, 411733 (2020)

    Article  Google Scholar 

  30. Ç. Bilkan, Y. Azizian-Kalandaragh, Ö. Sevgili, Ş. Altındal, J. Mater. Sci. Mater. Electron. 30, 20479 (2019)

    Article  Google Scholar 

  31. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Oxford University Press, London, 1988)

    Google Scholar 

  32. A. Buyukbas-Ulusan, S. Altındal-Yerişkin, A. Tataroğlu, J. Mater. Sci. Mater. Electron. 29, 16740 (2018)

    Article  Google Scholar 

  33. S. Altındal Yerişkin, J. Mater. Sci. Mater. Electron. 30, 17032 (2019)

    Article  Google Scholar 

  34. V. Rajagopal Reddy, C.-J. Choi, Vacuum 164, 233 (2019)

    Article  ADS  Google Scholar 

  35. V. Manjunath, V. Rajagopal Reddy, P.R. Sekhar Reddy, V. Janardhanam, C.-J. Choi, Curr. Appl. Phys. 17, 980 (2017)

    Article  ADS  Google Scholar 

  36. E.A. Akhlaghi, Y. Badali, Ş. Altindal, Y. Azizian-Kalandaragh, Phys. B 546, 93 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All authors would like to thank Gazi University Scientific Research Center for the supports and contributions (Project no: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Sevgili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevgili, Ö., Yıldırım, M., Azizian-Kalandaragh, Y. et al. A comparison study regarding Al/p-Si and Al/(carbon nanofiber–PVP)/p-Si diodes: current/impedance–voltage (I/ZV) characteristics. Appl. Phys. A 126, 634 (2020). https://doi.org/10.1007/s00339-020-03817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03817-7

Keywords

Navigation