Skip to main content
Log in

The effect of various fuels on the yield, structural and optical properties zinc zirconate nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Various types of fuels were used in a low-temperature solution combustion synthesis of zinc zirconate nanocomposite at a pH of 7. In the synthesis, the fuels used were citric acid, glycine, urea, hydrazine hydrate, and ammonium nitrate while zirconium butoxide and zinc nitrate were the precursor sources of Zr4+ and Zn2+ ions, respectively. The samples were calcined for 2 h at a temperature of 600 °C. The study of the structural properties showed varied morphologies ranging from highly agglomerated surfaces, crystalline aggregates as well as nanorods. There was a gradual growth of zinc zirconate perovskite within phases of zirconia and zinc oxide. It was observed that there were prominent photoluminescence emissions spread from violet-blue into the yellow-white regions with peaks varying from about 400 to 490 nm. The energy bandgap of the nanocomposites was between 2.93 and 3.22 eV depending on the fuel used in the preparation of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Pivkina, P. Ulyanova, Y. Frolov, S. Zavyalov, J. Schoonman, Nanomaterials for heterogeneous combustion. Propellants Explos. Pyrotech. 29, 39–48 (2004)

    Article  Google Scholar 

  2. N. Assi, A.A.M. Sharif, Q.S.M. Naeini, Synthesis, characterization and investigation photocatalytic degradation of Nitro Phenol with nano ZnO and ZrO2. Int. J. Nano Dimens. 52014, 387–391 (2014)

    Google Scholar 

  3. P. Palmero, Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5, 656–696 (2015)

    Article  Google Scholar 

  4. E.T. Thostenson, C. Li, T.-W. Chou, Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    Article  Google Scholar 

  5. L.L. Beecroft, C.K. Ober, Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997)

    Article  Google Scholar 

  6. A.K. Alves, C.P. Bergmann, F.A. Berutti, Combustion synthesis, Novel Synthesis and Characterization of Nanostructured Materials (Springer, Berlin, 2013), pp. 11–22

    Chapter  Google Scholar 

  7. A.R. West, Solid State Chemistry and its Applications, 2nd edn. (Department of Materials Science and Engineering, University of Sheffield, John Wiley & Sons Ltd, UK, 2005)

    Google Scholar 

  8. T. Mimani, K.C. Patil, Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134–137 (2001)

    Google Scholar 

  9. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016)

    Article  Google Scholar 

  10. A.S. Mukasyan, P. Epstein, P. Dinka, Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31, 1789–1795 (2007)

    Article  Google Scholar 

  11. K.C. Patil, M.S. Hegde, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials world, Solution Combustion Synthesis of Oxide Materials (Scientific Publishing Co. Pte. Ltd., Singapore, 2008), pp. 42–60

    Google Scholar 

  12. S. Challagulla, S. Roya, The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764–2772 (2017)

    Article  ADS  Google Scholar 

  13. F. Deganello, G. Marcìb, G. Deganello, Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: a systematic approach. J. Eur. Ceram. Soc. 29, 439–450 (2009)

    Article  Google Scholar 

  14. F. Deganello, A.K. Tyagi, Solution combustion synthesis, energy and environment: best parameters for better materials. Prog. Cryst. Growth Charact. Mater. 64, 23–61 (2018)

    Article  Google Scholar 

  15. S.L. González-Cortés, F.E. Imbert, Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Catal. A 452, 117–131 (2013)

    Article  Google Scholar 

  16. F.-T. Li, J. Ran, M. Jaroniec, S.Z. Qiao, Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 17590–17610 (2015)

    Article  ADS  Google Scholar 

  17. M.K. Musembi, F.B. Dejene, Investigation of the effect of precursor ratios on the solution combustion synthesis of zinc zirconate nanocomposite. Heliyon 5, e03028 (2019)

    Article  Google Scholar 

  18. I. Ahemen, F. Dejene, Photophysical and energy transfer processes in Ce3+ co-doped ZrO2: Eu3+ nanorods. Appl. Phys. A 123, 140–147 (2017)

    Article  ADS  Google Scholar 

  19. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Effect of annealing temperatures on properties of sol-gel grown ZnO-ZrO2 films. Cryst. Res. Technol. 45, 1154–1160 (2010)

    Article  Google Scholar 

  20. L.S. Carvalho, VRdMe Melo, DMdA Melo, E.V. Sobrinho, D. Ruiz, Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Mater. Res. 21, 11 (2018)

    Google Scholar 

  21. K.A. Aly, N.M. Khalil, Y. Algamal, Q.M.A. Saleem, Estimation of lattice strain for zirconia nano-particles based on Williamson- Hall analysis. Mater. Chem. Phys. 193, 182–188 (2017)

    Article  Google Scholar 

  22. T. Theivasanthi, M. Alagar, Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. Mater. Sci. 1, 1–10 (2013)

    Google Scholar 

  23. D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, The physics of mixed crystals, Micro- and Macro-Properties of solids: Thermal, Mechanical and Dielectric properties (Springer, Berlin, 2006), pp. 285–327

    Google Scholar 

  24. B. Schrader, General survey of vibrational spectroscopy, in Infrared and Rarnan Spectroscopy Methods and Applications, B, ed. by Ed Schrader (VCH Verlagsgesellschaft mbH, VCH Publishers, Weinheini, 1995), pp. 7–61

    Google Scholar 

  25. H. Mark, Fundamentals of NIR spectroscopy, in Near-Infrared Applications in Biotechnology, R, ed. by Ed Raghavachari (CMarcel Dekker Inc, New York, 2001), pp. 293–321

    Google Scholar 

  26. M.H. Habibi, E. Askari, Thermal and structural studies of zinc zirconate nanoscale composite derived from sol–gel process. The effects of heat-treatment on properties. J. Therm. Anal. Calorim. 111, 227–233 (2013)

    Article  Google Scholar 

  27. M.H. Habibi, E. Askari, Fabrication and spectral properties of zinc zirconate nanorod composites by sol-gel method for optical applications: effect of chloride and oxychloride precursors and sintering temperature on band gap. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 45, 281–285 (2015)

    Article  Google Scholar 

  28. M.C.U. López, M.A.A. Lemus, M.C. Hidalgo, R.L. González, P.Q. Owen, S. Oros-Ruiz et al., Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J. Nanomater. 12, 1 (2019)

    Google Scholar 

  29. I. Ahemen, F.B. Dejene, R. Botha, Strong green-light emitting Tb3+ doped tetragonal ZrO2 nanophosphors stabilized by Ba2+ ions. J. Lumin. 201, 303–313 (2018)

    Article  Google Scholar 

  30. E.A.C. Miranda, J.F.M. Carvajal, O.J.R. Baena, Effect of the fuels glycine, urea and citric acid on synthesis of the ceramic pigment ZnCr2O4 by solution combustion. Mater. Res. 18, 1038–1043 (2015)

    Article  Google Scholar 

  31. X. Zhu, J. Zhou, J. Zhu, Z. Liu, Y. Li, T. Al-Kassab, Structural characterization and optical properties of perovskite ZnZrO3 nanoparticles. J. Am. Ceram. Soc. 97, 1987–1992 (2014)

    Article  Google Scholar 

  32. M.H. Habibi, E. Askari, M. Habibi, M. Zendehdel, Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 197–202 (2013)

    Article  ADS  Google Scholar 

  33. R.K. Biroju, P.K. Giri, Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. J. Appl. Phys. 122, 11 (2017)

    Article  Google Scholar 

  34. O. Yayapao, T. Thongtemb, A. Phuruangrat, S. Thongtem, Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. J. Alloy. Compd. 576, 72–79 (2013)

    Article  Google Scholar 

  35. P. Patil. (2010) CIE coordinate calculator. Available: https://www.mathworks.com/matlabcentral/fileexchange/29620-cie-coordinate-calculator. Accessed 15 Mar 2020

Download references

Acknowledgements

We are grateful to the University of the Free State and the National Research Fund, NRF South Africa for facilitating the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Musembi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musembi, M.K., Dejene, F.B., Ahemen, I. et al. The effect of various fuels on the yield, structural and optical properties zinc zirconate nanocomposite. Appl. Phys. A 126, 610 (2020). https://doi.org/10.1007/s00339-020-03795-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03795-w

Keywords

Navigation