Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The Science of Nanomaterials is proving to be one of the most attractive and promising fields for technological development in this century. In the scientific literature several terms related to Nanoscience can be found, of which it is worth highlighting nanoparticles, nanocrystals, nanofibers, nanotubes and nanocomposites. In fact, all these are related to nanostructured materials, which have well-defined structural features. The physical and chemical properties of materials at the nanometer scale (usually set in the range of 1–100 nm) are of immense interest and increasing importance for future technological applications. Nanostructured materials often exhibit different properties when compared to other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patil, K.C., Mimani, T.: Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134–137 (2001)

    Google Scholar 

  2. Kingsley, J.J., Patil, K.C.: A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett. 6, 427–432 (1988)

    Article  CAS  Google Scholar 

  3. Mimani, T.: Fire synthesis: preparation of alumina related products. Resonance 5, 50–57 (2000)

    Article  CAS  Google Scholar 

  4. Mimani, T.: Instant synthesis of nanoscale spinel aluminates. J. Alloys Comp. 315, 123–128 (2001)

    Article  CAS  Google Scholar 

  5. Quenard, O., Grave, E., Laurent, C., Rousset, A.: Synthesis, characterization and thermal behaviour of Fe0.65Co0.35MgAl2O4 and Fe0.65Ni 0.35MgAl2O4 nanocomposite powders. J. Mater. Chem. 7, 2457–2467 (1997)

    Article  CAS  Google Scholar 

  6. Mimani, T., Ghosh, S.: Combustion synthesis of cobalt pigments: blue and pink. Curr. Sci. 78, 892–896 (2000)

    CAS  Google Scholar 

  7. Shikao, S., Wang, J.: Combustion synthesis of Eu activated Y3Al5O12 phosphor nanoparticles. J. Alloys Comp. 327, 82–86 (2001)

    Article  Google Scholar 

  8. Ravichandran, D., Roy, R., Ravindranathan, P., White, W.B.: Combustion synthesis of hexaluminate phosphors. J. Am. Ceram. Soc. 82, 1082–1166 (1999)

    Article  CAS  Google Scholar 

  9. Bera, P., Patil, K.C., Jayaram, V., Hegde, M.S., Subbana, G.N.: Combustion synthesis of nano metal particles supported on α-Al2O3: CO oxidation and NO reduction catalysts. J. Mater. Chem. 9, 1801–1805 (1999)

    Article  CAS  Google Scholar 

  10. Bera, P., Patil, K.C., Hegde, M.S.: Oxidation of CH4 and C3H8 over combustion synthesized nanosize metal particles supported on α-Al2O3. Chem. Phys. 2, 373–378 (2000)

    CAS  Google Scholar 

  11. Greca, M.C., Moraes, C., Segadães, A.M.: Palladium/alumina catalysts: effect of the processing route on catalytic performance. Appl. Catal. A 26, 267–276 (2001)

    Google Scholar 

  12. Aruna, S.T., Patil, K.C.: Combustion synthesis and properties of nanostructured ceria–zirconia solid solutions. Nanostruct. Mater. 10, 955–964 (1998)

    Article  CAS  Google Scholar 

  13. Lamas, D.G., Juarez, R.E., Lascalea, G.E., Walsoe, N.E.: Synthesis of compositionally homogeneous, nanocrystalline ZrO2-35 mol% CeO2 powders by gel combustion. J. Mater. Sci. Lett. 20, 1447–1449 (2001)

    Article  CAS  Google Scholar 

  14. Bera, P., Patil, K.C., Jayarama, V., Subbanna, G.N., Hegde, M.S.: Ionic dispersion of Pt and Pd on CeO2 by combustion method: effect of metal–ceria interaction on catalytic activities for NO reduction, CO and hydrocarbon oxidation. J. Catal. 196, 293–301 (2000)

    Article  CAS  Google Scholar 

  15. Hariprakash, B., Bera, P., Martha, S.K., Gaffoor, S.A., Hegde, M.S., Shukla, A.K.: Ceria supported platinum as hydrogen-oxygen recombination catalyst for sealed lead-acid batteries. Electrochem. Solid-State Lett. 4, A23–A26 (2001)

    Article  CAS  Google Scholar 

  16. Aruna, S.T., Muthuraman, M., Patil, K.C.: Synthesis and properties of Ni-YSZ cermet anode material for solid oxide fuel cells. Solid State Ionics 111, 45–51 (1998)

    Article  CAS  Google Scholar 

  17. Suresh, K., Panchapagesan, T.S., Patil, K.C.: Synthesis and properties of La1−xSrx FeO3. Solid State Ionics 126, 299–305 (1999)

    Article  CAS  Google Scholar 

  18. Park, H.K., Han, Y.S., Kim, D.K., Kim, C.H.: Synthesis of LaCrO3 powders by microwave induced combustion of metal nitrate-urea mixture solution. J. Mater. Sci. Lett. 17, 785–787 (1998)

    Article  CAS  Google Scholar 

  19. Julien, C., Camacho-Lopez, M.A., Mohan, T., Chitra, S., Kalayani, P.: Combustion synthesis and characterization of substituted lithium cobalt oxides in lithium batteries. Solid State Ionics 141–142, 549–557 (2001)

    Google Scholar 

  20. Patil, K.C., Mimani, T.: Preparation and properties of nanocrystalline magnetic oxides. Mag. Soc. India Bull. 22, 21–26 (2000)

    Google Scholar 

  21. Anuradha, T.V., Ranganathan, S., Mimani, T., Patil, K.C.: Combustion synthesis of nanostructured barium titanate. Scripta Mater. 44, 2237–2241 (2001)

    Article  CAS  Google Scholar 

  22. Schafer, J., Sigmund, W., Roy, S., Aldinger, F.: Low temperature method to obtain alternative cermet materials for SOFC anodes. Synthesis of ultrafine Pb(Zr, Ti)O3 powder by sol-gel combustion. J. Mater. Res. 12, 2518–2521 (1997)

    Article  CAS  Google Scholar 

  23. Sousa, V.C., Segadães, A.M., Moreli, M.R., Kiminami, R.H.G.A.: Combustion synthesized powders for varistor ceramics. Int. J. Inorg. Mater. 1, 235–241 (1999)

    Article  CAS  Google Scholar 

  24. Ianoş, R., Lazău, I., Păcurariu, C., Barvinschi, P.: Fuel mixture approach for solution combustion synthesis of Ca3Al2O6 powders. Cem. Concr. Res. 39, 566–572 (2009)

    Article  Google Scholar 

  25. Bhaduri, S., Zhou, E., Bhaduri, S.B.: Auto ignition processing of nanocrystalline α-Al2O3. Nanostruct. Mater. 7, 487–496 (1999)

    Article  Google Scholar 

  26. Neiva, L.S., Gama, L., Lira, H.L., Fagury-Neto, E., Kiminami, R.H.G.A., Costa, A.C.F.M.: Influência do Teor de Ureia na Obtenção de Pós de Al2O3 por Reação de Combustão. Anais do 47° Congresso Brasileiro de Cerâmica, pp. 816–817 (2003)

    Google Scholar 

  27. Toniolo, J.C., Lima, M.D., Takimi, A.S., Bergmann, C.P.: Synthesis of alumina powders by the glycine-nitrate combustion process. Mater. Res. Bull. 40, 561–571 (2005)

    Article  CAS  Google Scholar 

  28. Segadães, A.M., Morelli, M.R., Kiminami, R.G.A.: Combustion synthesis of aluminium titanate. J. Eur. Ceram. Soc. 18, 771–781 (1998)

    Article  Google Scholar 

  29. Purohit, R.D., Sharma, B.P., Pillai, K.T., Tyagi, A.K.: Ultra-fine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711–2721 (2001)

    Article  CAS  Google Scholar 

  30. Li, W., Li, J., Gou, J.: Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 23, 2289–2295 (2003)

    Article  CAS  Google Scholar 

  31. Toniolo, J.C., Takimi, A.S., Bergmann, C.P.: Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 45, 672–676 (2010)

    Article  CAS  Google Scholar 

  32. Lima, M.D., Bonadiman, R., Andrade, M.J., Toniolo, J.C., Bergmann, C.P.: Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. J. Eur. Ceram. Soc. 26, 1213–1220 (2006)

    Article  CAS  Google Scholar 

  33. Avgouropoulos, G., Ioannides, T.: Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Appl. Catal. A 244, 155–167 (2003)

    Article  CAS  Google Scholar 

  34. Venkataraman, A., Hiremath, V.A., Date, S.K., Kulkarni, S.D.: New combustion route to γ-Fe2O3 synthesis. Bull. Mater. Sci. 24, 617–621 (2001)

    Article  CAS  Google Scholar 

  35. Toniolo, J.C., Takimi, A.S., Bonadiman, R., Andrade, M.J., Bergmann, C.P.: Synthesis by the solution combustion process and magnetic properties of iron oxide (Fe3O4 and α-Fe2O3) particles. J. Mater. Sci. 42, 4785–4791 (2007)

    Article  CAS  Google Scholar 

  36. Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine-nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6–12 (1990)

    Article  CAS  Google Scholar 

  37. Jung, C.H., Park, J.Y., Oh, S.J., Park, H.K., Kim, Y.S., Kim, D.K., Kim, J.H.: Synthesis of Li2TiO3 ceramic breeder powders by the combustion process. J. Nucl. Mater. 253, 203–212 (1998)

    Article  CAS  Google Scholar 

  38. Kingsley, J.J., Pederson, L.R.: Combustion synthesis of perovskite LnCrO3 Powders using Ammonium Dichromate. Mater. Lett. 18(1993), 89–96 (1993)

    Article  CAS  Google Scholar 

  39. Ganesh, I., Srinivas, B., Johnson, R., Saha, B.P., Mahajan, Y.R.: Effect of fuel type on morphology and reactivity of combustion synthesised MgAl2O4 powders. Br. Ceram. Trans. 101, 247–254 (2002)

    Google Scholar 

  40. Chick, L.A., Maupin, G.D., Pederson, L.R.: Glycine-nitrate synthesis of ceramic-metal composite. Nanostruct. Mater. 5, 603–615 (1994)

    Article  Google Scholar 

  41. Toniolo, J.C., Bonadiman, R., Oliveira, L.L., Hohemberger, J.M., Bergmann, C.P.: Synthesis of nanocrystalline nickel oxide powders via glycine-nitrate combustion. South Braz. J. Chem. 13, 53–61 (2005)

    Google Scholar 

  42. Ringuedé, A., Labrincha, J.A., Frade, J.R.: A combustion synthesis method to obtain alternative cermet materials for SOFC anodes. Solid State Ionics 141, 549–557 (2001)

    Article  Google Scholar 

  43. Das, R.N., Pathak, A., Saha, S.K., Sannigrahi, S., Pramanik, P.: Preparation, characterization and property of fine PZT powders from the poly vinyl alcohol evaporation route. Mater. Res. Bull. 36, 1539–1549 (2001)

    Article  CAS  Google Scholar 

  44. Zanetti, S.M., Santiago, E.I., Bulhões, L.O.S., Varela, J.A., Leite, E.R., Longo, E.: Preparation and characterization of nanosized SrBi2Nb2O9 powder by the combustion synthesis. Mater. Lett. 57, 2812–2816 (2003)

    Article  CAS  Google Scholar 

  45. Purohit, R.D., Saha, S., Tyagi, A.K.: Nanocrystalline thoria powders via glycine-nitrate combustion. J. Nucl. Mater. 288, 7–10 (2001)

    Article  CAS  Google Scholar 

  46. Dasgupta, N., Krishnamoorthy, R., Jacob, T.: Glycol-nitrate combustion synthesis of fine sinter-active yttria. Int. J. Inorg. Mater. 3, 143–149 (2001)

    Article  CAS  Google Scholar 

  47. McKittrick, J., Shea, L.E., Bacalski, C.F., Bosze, E.J.: The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays 19, 169–172 (1999)

    Article  CAS  Google Scholar 

  48. Wu, L., Yu, J.C., Zhang, L., Wang, X., Li, S.: Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 177, 3666–3674 (2004)

    Article  CAS  Google Scholar 

  49. Ray, J.C., Saha, C.R., Pramanik, P.: Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: preparation from a polymer precursor and the study of the thermal and structural properties. J. Eur. Ceram. Soc. 22, 851–862 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelise Kopp Alves .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopp Alves, A., Bergmann, C.P., Berutti, F.A. (2013). Combustion Synthesis. In: Novel Synthesis and Characterization of Nanostructured Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41275-2_2

Download citation

Publish with us

Policies and ethics