Precision measurement of ablation thresholds with variable pulse duration laser

Abstract

The laser ablation threshold’s dependence on the pulse duration is a powerful tool that can be used to aid in understanding the mechanism of laser ablation. To determine the expected value of the ablation threshold accurately, it is essential to increase the number of data points available for analysis. In this study, we developed an automatic pulse-duration-tunable laser processing system with an in situ monitor that can collect more than 10,000 data points in a few hours. The laser system was operated at a wavelength of 1050 nm with a repetition rate of 1 MHz, and the pulse duration was tuned from 0.53 to 31 ps. Multi-shot (\({10}^5\) pulses) ablation thresholds for silicon were measured with an average error of less than 1%. We found that there were two ablation thresholds, at a fluence of \(0.22\ \hbox {J}/\hbox {cm}^2\) with a pulse duration below 4 ps and at an intensity of \(24\ \hbox {GW}/\hbox {cm}^2\) of intensity with a pulse duration above 13 ps.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A: Mater. Sci. Process. 63, 109 (1996)

    ADS  Article  Google Scholar 

  2. 2.

    T. Shibuya, T. Takahashi, K. Sakaue, T.H. Dinh, H. Hara, T. Higashiguchi, M. Ishino, Y. Koshiba, M. Nishikino, H. Ogawa, M. Tanaka, M. Washio, Y. Kobayashi, R. Kuroda, Appl. Phys. Lett. 113, 171902 (2018)

    ADS  Article  Google Scholar 

  3. 3.

    R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003)

    Article  Google Scholar 

  5. 5.

    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  6. 6.

    R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62, 13167 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    P.B. Corkum, F. Brunet, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61, 2886 (1988)

    ADS  Article  Google Scholar 

  8. 8.

    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    ADS  Article  Google Scholar 

  9. 9.

    B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, J. Phys. D 50, 193001 (2017)

    ADS  Article  Google Scholar 

  10. 10.

    A. Rämer, O. Osmani, B. Rethfeld, J. Appl. Phys. 116, 053508 (2014)

    ADS  Article  Google Scholar 

  11. 11.

    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248 (1995)

    ADS  Article  Google Scholar 

  13. 13.

    D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    ADS  Article  Google Scholar 

  14. 14.

    P.P. Pronko, P.A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, G. Mourou, Phys. Rev. B 58, 2387 (1998)

    ADS  Article  Google Scholar 

  15. 15.

    P. Allenspacher, B. Huttner, W. Riede, Proc. SPIE 4932, 358 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    W. Kautek, J. Kruger, Appl. Phys. Lett. 69, 3146 (1996)

    ADS  Article  Google Scholar 

  17. 17.

    K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, M. Obara, Appl. Phys. A: Mater. Sci. Process. 69, S359 (1999)

    ADS  Article  Google Scholar 

  18. 18.

    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Appl. Surf. Sci. 150, 101 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988)

    ADS  Article  Google Scholar 

  21. 21.

    J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010)

    ADS  Article  Google Scholar 

  22. 22.

    S. Tani, Y. Kobayashi, Appl. Phys. A 124, 265 (2019)

    ADS  Article  Google Scholar 

  23. 23.

    R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Opt. Express 22(9), 11312 (2014)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on results obtained from the New Energy and Industrial Technology Development Organization (NEDO) project ”Development of advanced laser processing with intelligence based on high-brightness and high-efficiency laser technologies (TACMI project).”

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yohei Kobayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, T., Tani, S., Kuroda, R. et al. Precision measurement of ablation thresholds with variable pulse duration laser. Appl. Phys. A 126, 582 (2020). https://doi.org/10.1007/s00339-020-03754-5

Download citation

Keywords

  • Laser ablation
  • Ablation threshold
  • Automated system
  • Energy dissipation
  • Silicon