Skip to main content
Log in

The evaluation of the current–voltage and capacitance–voltage-frequency measurements of Yb/p-Si Schottky diodes with a high zero-bias barrier height

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The rare-earth metal Yb (Ytterbium) which has a very low work function of 2.60 eV has been shown to high quality Schottky contacts to p-Si. Two distinct linear regions in the semi-logarithmic current density–voltage plot are observed for Yb/p-Si Schottky diodes. From the linear regions, the very high zero-bias barrier height values are determined as 0.83 and 0.88 eV. The value of rectification ratio is in order of ~ 106 which is close to the commercial Schottky diodes. From Cheung functions, the value of series resistance is found to be 12.60 Ω. Furthermore, the important contact parameters of the diodes are calculated by using modified Norde method. The contact parameters obtained from reverse bias capacitance–voltage-frequency measurements do not show an important dependence on frequency. The calculated values of acceptor concentration are in close agreement with the value of doping concentration of the p-Si wafer used in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Anand, Microwave Schottky barrier diodes, in Metal-Semiconductor Schottky Barrier Junctions and Their Applications, ed. by B.L. Sharma (Springer, Boston, 1984)

    Google Scholar 

  2. K.F. Braun, Pogg. Ann. Phys. Chem. 153, 556 (1874)

    Google Scholar 

  3. F. Nasim, A.S. Bhatti, Int. J. Electron. 100, 1228 (2013)

    Article  Google Scholar 

  4. S. Sassen, B. Witzigmann, C. Wolk, H. Brugger, IEEE Trans. Electron Devices 47, 24 (2000)

    Article  ADS  Google Scholar 

  5. G. Rajeswaran, V.J. Rao, M.A. Jackson, M. Thayer, W.A. Anderson, B.B. Rao, IEEE Trans. Electron Devices 30, 1840 (1983)

    Article  ADS  Google Scholar 

  6. J. Shewchun, D. Burk, M.B. Spitzer, IEEE Trans. Electron Devices 27, 705 (1980)

    Article  ADS  Google Scholar 

  7. A. Keffous, M. Siad, A. Cheriet, N. Benrekaa, Y. Belkacem, H. Menari, W. Chergui, A. Dahmani, Appl. Surf. Sci. 236, 42 (2004)

    Article  ADS  Google Scholar 

  8. V. Khemka, V. Ananthan, T.P. Chow, IEEE Electron Device Lett. 21, 286 (2000)

    Article  ADS  Google Scholar 

  9. N. Qu, A. Goerlach, US 8,836,072 B2 (2014)

  10. C.-Y. Hung, T.-C. Kao, J.-H. Lee, J. Gong, K.-H. Lo, H.-D. Su, C.-F. Haung, IEEE Electron Device Lett. 35, 1052 (2014)

    Article  ADS  Google Scholar 

  11. H. Kozaka, M. Takata, S. Murakami, T. Yatsuo, in Proceedings of 4th International Symposium Power Semiconductor Devices and Ics (IEEE, 2005), pp. 80–85

  12. M. Seto, C. Rochefort, S. de Jager, R.F.M. Hendriks, G.W. ’t Hooft, M.B. van der Mark, Appl. Phys. Lett. 75, 1976 (1999)

    Article  ADS  Google Scholar 

  13. E.H. Rhoderick, IEE Proc. I Solid State Electron Devices 129, 1 (1982)

    Article  Google Scholar 

  14. B.L. Smith, E.H. Rhoderick, Solid State Electron. 14, 71 (1971)

    Article  ADS  Google Scholar 

  15. J. Tersoff, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 4, 1066 (1986)

    Article  ADS  Google Scholar 

  16. M. Çakar, C. Temirci, A. Türüt, G. Çankaya, Phys. Scr. 68, 70 (2003)

    Article  ADS  Google Scholar 

  17. K. Akkiliç, A. Türüt, G. Çankaya, T. Kiliçoğlu, Solid State Commun. 125, 551 (2003)

    Article  ADS  Google Scholar 

  18. M.O. Aboelfotoh, Phys. Rev. B 39, 5070 (1989)

    Article  ADS  Google Scholar 

  19. H. Norde, J. de Sousa Pires, F. D’Heurle, F. Pesavento, S. Petersson, P.A. Tove, Appl. Phys. Lett. 38, 865 (1981)

    Article  ADS  Google Scholar 

  20. K.D. Patel, R. Srivastava, J. Mater. Sci. Lett. 1509 (1997)

  21. G. Çankaya, N. Uçar, Z. Für Naturforsch A 59 (2004)

  22. I. Ohdomari, K.N. Tu, F.M. D’Heurle, T.S. Kuan, S. Petersson, Appl. Phys. Lett. 33, 1028 (1978)

    Article  ADS  Google Scholar 

  23. H.B. Michaelson, IBM J. Res. Dev. 22, 72 (1978)

    Article  Google Scholar 

  24. Y.-Y. Zhang, S.-Y. Jung, J. Oh, H.-S. Shin, S.-K. Oh, J.-S. Wang, P. Majhi, R. Jammy, H.-D. Lee, Jpn. J. Appl. Phys. 49, 055701 (2010)

    Article  ADS  Google Scholar 

  25. S. Zhu, J. Chen, M.-F. Li, S.J. Lee, J. Singh, C.X. Zhu, A. Du, C.H. Tung, A. Chin, D.L. Kwong, IEEE Electron Device Lett. 25, 565 (2004)

    Article  ADS  Google Scholar 

  26. M. Coskun, O. Polat, F.M. Coşkun, H. Efeoğlu, M. Çağlar, Z. Durmuş, A. Türüt, Mater. Sci. Semicond. Process. 102, 104587 (2019)

    Article  Google Scholar 

  27. Y. Caglar, M. Caglar, S. Ilican, F. Yakuphanoglu, Microelectron. Eng. 86, 2072 (2009)

    Article  Google Scholar 

  28. K. Sasikumar, R. Bharathikannan, J. Chandrasekaran, M. Raja, J. Inorg Organomet. Polym. Mater. (2019)

  29. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  30. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  31. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  32. F. Roccaforte, F. La Via, S. Di Franco, V. Raineri, Microelectron. Eng. 70, 524 (2003)

    Article  Google Scholar 

  33. J. Sing, Semiconductor Devices: Basic Principles (Wiley, USA, 2001)

    Google Scholar 

  34. Y. Takami, F. Shiraishi, M. Hosoe, IEEE Trans. Nucl. Sci. 31, 340 (1984)

    Article  ADS  Google Scholar 

  35. M.K. Rabinal, Appl. Surf. Sci. 382, 41 (2016)

    Article  ADS  Google Scholar 

  36. J. Chen, T.-C. Ku, M.-F. Li, A. Chin, in 2012 12th International Workshop on Junction Technology (IEEE, 2012), pp. 127–130

  37. H. Çetin, B. Şahin, E. Ayyildiz, A. Türüt, Phys. B Condens Matter 364, 133 (2005)

    Article  ADS  Google Scholar 

  38. Ç. Nuhoglu, S. Aydogan, A. Türüt, Semicond. Sci. Technol. 18, 642 (2003)

    Article  ADS  Google Scholar 

  39. S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices, 3rd edn. (Wliey, Canada, 2007)

    Google Scholar 

  40. J. Tersoff, Surf. Sci. 168, 275 (1986)

    Article  ADS  Google Scholar 

  41. Y. Yasuda, S. Zaima, T. Yamauchi, Control of Semiconductor Interfaces (Elsevier, Japan, 1994)

    Google Scholar 

  42. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  ADS  Google Scholar 

  43. W. Mönch, Electronic Properties of Semiconductor Interfaces (Springer, Germany, 2004)

    Book  Google Scholar 

  44. T.U. Kampen, S. Park, D.R.T. Zahn, Appl. Surf. Sci. 190, 461 (2002)

    Article  ADS  Google Scholar 

  45. S. Asubay, Ö. Güllü, A. Türüt, Vacuum 83, 1470 (2009)

    Article  ADS  Google Scholar 

  46. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    Article  ADS  Google Scholar 

  47. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  48. K.E. Bohlin, J. Appl. Phys. 60, 1223 (1986)

    Article  ADS  Google Scholar 

  49. D.A. Aldemir, A. Kökce, A.F. Özdemir, Sak Univ J Sci 21, 1286 (2017)

    Google Scholar 

  50. V.R. Reddy, L.D. Rao, V. Janardhanam, M.-S. Kang, C.-J. Choi, Mater. Trans. 54, 2173 (2013)

    Article  Google Scholar 

  51. Ş. Karataş, Ş. Altındal, M. Çakar, Phys. B Condens Matter 357, 386 (2005)

    Article  ADS  Google Scholar 

  52. Ş. Karataş, Ş. Altındal, A. Türüt, M. Çakar, Phys. B Condens. Matter 392, 43 (2007)

    Article  ADS  Google Scholar 

  53. H. Çetinkara, A. Türüt, D. Zengı̀n, Ş. Erel, Appl. Surf. Sci. 207, 190 (2003)

    Article  ADS  Google Scholar 

  54. D.A. Neamen, Semiconductor Physics and Devices : Basic Principles, 3rd ed. (New York, 2003)

  55. B.L. Sharma, Metal-Sem, Conductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  56. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216 (1965)

    Article  ADS  Google Scholar 

  57. E. Arslan, S. Bütün, Y. Şafak, E. Ozbay, J. Electron. Mater. 39, 2681 (2010)

    Article  ADS  Google Scholar 

  58. A. Singh, Solid State Electron. 28, 223 (1985)

    Article  ADS  Google Scholar 

  59. P. Chattopadhyay, B. RayChaudhuri, Solid State Electron. 36, 605 (1993)

    Article  ADS  Google Scholar 

  60. B. Akkal, Z. Benamara, B. Gruzza, L. Bideux, Vacuum 57, 219 (2000)

    Article  Google Scholar 

  61. P. Chattopadhyay, A.N. Daw, Solid State Electron. 29, 555 (1986)

    Article  ADS  Google Scholar 

  62. Z. Ouennoughi, Phys. Status Solidi 160, 127 (1997)

    Article  ADS  Google Scholar 

  63. J. Szatkowski, K. Sierański, Solid State Electron. 35, 1013 (1992)

    Article  ADS  Google Scholar 

  64. A. Tataroğlu, Ş. Altındal, J. Alloys Compd. 484, 405 (2009)

    Article  Google Scholar 

  65. S.A. Yeriskin, H.I. Unal, B. Sari, J. Appl. Polym. Sci. 120, 390 (2011)

    Article  Google Scholar 

  66. İ. Yücedağ, Optoelectron. Adv. Mater Commun. 3, 612 (2009)

    Google Scholar 

  67. M.E. Aydın, M. Soylu, F. Yakuphanoglu, W.A. Farooq, Microelectron. Eng. 88, 867 (2011)

    Article  Google Scholar 

  68. S.J. Fonash, J. Appl. Phys. 54, 1966 (1983)

    Article  ADS  Google Scholar 

  69. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  ADS  Google Scholar 

  70. Y.F. Tsay, B. Gong, S.S. Mitra, J.F. Vetelino, Phys. Rev. B 6, 2330 (1972)

    Article  ADS  Google Scholar 

  71. P. Chattopadhyay, Solid-State 39, 1491 (1996)

    ADS  Google Scholar 

  72. S. Pandey, S. Kal, Solid-State 42, 943 (1998)

    ADS  Google Scholar 

  73. C. Barret, F. Chekir, A. Vapaille, J. Phys. C: Solid State Phys. 16, 2421 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Havva Elif Lapa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, H.E., Güçlü, Ç.Ş., Aldemir, D.A. et al. The evaluation of the current–voltage and capacitance–voltage-frequency measurements of Yb/p-Si Schottky diodes with a high zero-bias barrier height. Appl. Phys. A 126, 473 (2020). https://doi.org/10.1007/s00339-020-03662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03662-8

Keywords

Navigation