Skip to main content
Log in

The influence of methanol and NH4Cl on solvothermal ZnO synthesis and properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Powders composed of ZnO sub-microspheres were obtained in two stages: solvothermal synthesis and thermal annealing at 125, 300, 450 or 600ºC in atmospheric conditions. The synthesis was carried out with methanol as solvent, zinc acetate dihydrate as Zn2+ source and ammonia chloride as complexing agent. The as-grown and annealed samples were studied through photoluminescence, microRaman and reflectance spectroscopies, scanning electron microscopy and X-ray diffraction (XRD). After the solvothermal synthesis stage, a white precipitate was obtained composed of a flower-like multiphase assembly of layers identified mainly as a layered basic zinc salts (LBZS) and Zn(NH3)2Cl2. After the annealing treatments, the LBZS and Zn(NH3)2Cl2 transformed into ZnO, while the powder morphology changed from the layered flower-like to polycrystalline ZnO spherical particles with sub-micrometer diameters. With increasing annealing temperature, the ZnO spheres size remained unchanged, while the mean crystallite size and wurtzite lattice parameters decreased as a result of tensile stress relaxation. Concomitantly, a blueshift of the defect-related ZnO emission was observed. The combined analysis of emission, vibrational and reflectance spectra and XRD suggests that the annealing treatments result in the formation of ZnO crystallites with oxygen vacancies and oxygen vacancy-zinc interstitial complexes whose densities increase as the annealing temperature increases. The results and analysis reported in this work contribute to the understanding of growth mechanisms relevant for the tailoring of ZnO powder properties through solvothermal synthesis in non-aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt, 65 years of ZnO research—old and very recent results. Phys. Stat Solidi Basic Res. 247, 1424–1447 (2010). https://doi.org/10.1002/pssb.200983195

    Article  ADS  Google Scholar 

  2. A.B. Djurisic, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34, 191–259 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  ADS  Google Scholar 

  3. O. Marin, V. González, M. Tirado, D. Comedi, Effects of methanol on morphology and photoluminescence in solvothermal grown ZnO powders and ZnO on Si. Mater. Lett. 251C, 41–44 (2019). https://doi.org/10.1016/j.matlet.2019.05.033

    Article  Google Scholar 

  4. O. Marin, T. Soliz, J.A. Gutierrez, M. Tirado, C. Figueroa, D. Comedi, Structural, optical and vibrational properties of ZnO: M (M=Al3+ and Sr2+) nano and micropowders grown by hydrothermal synthesis. J. Alloys Compd. 789, 56–65 (2019). https://doi.org/10.1016/j.jallcom.2019.03.115

    Article  Google Scholar 

  5. S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, ZnO doped with transition metal ions. IEEE Trans. Electron Devices. 54, 1040–1048 (2007). https://doi.org/10.1109/TED.2007.894371

    Article  ADS  Google Scholar 

  6. J. Neamtu, M. Volmer, The influence of doping with transition metal ions on the structure and magnetic properties of zinc oxide thin films. Sci. World J. 2014, 1–8 (2014). https://doi.org/10.1155/2014/265969

    Article  Google Scholar 

  7. M. Rahman, M. Wei, F. Xie, M. Khan, Efficient dye-sensitized solar cells composed of nanostructural ZnO doped with Ti. Catalysts. 9, 273 (2019). https://doi.org/10.3390/catal9030273

    Article  Google Scholar 

  8. A.M. Tayeb, M.A. Tony, E.K. Ismaeel, Engineered nanostructured ZnO for water remediation: operational parameters effect, Box-Behnken design optimization and kinetic determinations. Appl. Water Sci. (2019). https://doi.org/10.1007/s13201-019-0921-0

    Article  Google Scholar 

  9. E. de Lucas-Gil, A. Del Campo, L. Pascual, M. Monte-Serrano, J. Menéndez, J.F. Fernández, F. Rubio-Marcos, The fight against multidrug-resistant organisms: the role of ZnO crystalline defects. Mater. Sci. Eng. C. 99, 575–581 (2019). https://doi.org/10.1016/j.msec.2019.02.004

    Article  Google Scholar 

  10. A. Saranya, T. Devasena, H. Sivaram, R. Jayavel, Role of hexamine in ZnO morphologies at different growth temperature with potential application in dye sensitized solar cell. Mater. Sci. Semicond. Process. 92, 108 (2019). https://doi.org/10.1016/j.mssp.2018.03.028

    Article  Google Scholar 

  11. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms5953

    Article  ADS  Google Scholar 

  12. J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, A. Nathan, Size Tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs. ACS Photonics. 3, 215–222 (2016). https://doi.org/10.1021/acsphotonics.5b00267

    Article  Google Scholar 

  13. M.V. Bukhtiyarova, A review on effect of synthesis conditions on the formation of layered double hydroxides. J. Solid State Chem. 269, 494–506 (2019). https://doi.org/10.1016/j.jssc.2018.10.018

    Article  ADS  Google Scholar 

  14. J. Demel, J. Hynek, P. Kovář, Y. Dai, C. Taviot-Guého, O. Demel, M. Pospíšil, K. Lang, Insight into the structure of layered zinc hydroxide salts intercalated with dodecyl sulfate anions. J. Phys. Chem. C. 118, 27131–27141 (2014). https://doi.org/10.1021/jp508499g

    Article  Google Scholar 

  15. E. Hosono, S. Fujihara, T. Kimura, H. Imai, Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. J. Colloid Interface Sci. 272, 391–398 (2004). https://doi.org/10.1016/j.jcis.2003.10.005

    Article  ADS  Google Scholar 

  16. L. Tang, X. Ding, X. Zhao, Z. Wang, B. Zhou, Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor. J. Alloys Compd. 544, 67–72 (2012). https://doi.org/10.1016/j.jallcom.2012.07.138

    Article  Google Scholar 

  17. T. Yuki, S. Ueno, M. Hagiwara, S. Fujihara, Fabrication of layered hydroxide zinc nitrate films and their conversion to ZnO nanosheet assemblies for use in dye-sensitized solar cells. J. Asian Ceram. Soc. 3, 144–150 (2015). https://doi.org/10.1016/j.jascer.2014.12.006

    Article  Google Scholar 

  18. L. Xue, X. Mei, W. Zhang, L. Yuan, X. Hu, Y. Huang, K. Yanagisawa, Synthesis and assembly of zinc hydroxide sulfate large flakes: application in gas sensor based on a novel surface mount technology. Sens Actuators, B Chem. 147, 495–501 (2010). https://doi.org/10.1016/j.snb.2010.03.016

    Article  Google Scholar 

  19. F.C. Hawthorne, E. Sokolova, Simonkolleite, Zn5 (OH)8 Cl2 (H2O), a decorated interrupted-sheet structure of the form [MΦ2]4. Can. Mineral. 40, 939–946 (2002). https://doi.org/10.3749/gscanmin.40.3.939

    Article  Google Scholar 

  20. E. Swanson, H.F. Mcmurdie, M.C. Morris, H. Evans, B. Paretzkin, Standard x-ray diffraction powder patterns. National Bureau of Standars Monograph 25, U.S. Department of Commerce (1972)

  21. N.C. Vega, O. Marin, E. Tosi, G. Grinblat, E. Mosquera, M.S. Moreno, M. Tirado, D. Comedi, The shell effect on the room temperature photoluminescence from ZnO/MgO core/shell nanowires: exciton-phonon coupling and strain. Nanotechnology. 28, 275702 (2017). https://doi.org/10.1088/1361-6528/aa7454

    Article  ADS  Google Scholar 

  22. J. He, J. Hu, X. Mo, Q. Hao, Z. Fan, G. He, Y. Wang, W. Li, Q. He, Novel photocatalyst nitrogen-doped simonkolleite Zn5(OH)8Cl2·H2O with vis-up-conversion photoluminescence and effective visible-light photocatalysis. Appl. Phys. A Mater. Sci. Process. (2019). https://doi.org/10.1007/s00339-018-2275-0

    Article  Google Scholar 

  23. Y. Li, Y. Zou, Y. Hou, Synthesis and characterization of simonkolleite nanodisks and their conversion into ZnO nanostructures. Cryst. Res. Technol. 46, 305–308 (2011). https://doi.org/10.1002/crat.201000673

    Article  Google Scholar 

  24. D.N. Ishikawa, C.A. Téllez, Infrared and Raman spectra of Zn(NH3)2Br 2 with 15N and 2H isotopic substitution. Vib Spectrosc 8, 87–95 (1994). https://doi.org/10.1016/0924-2031(94)00014-8

    Article  Google Scholar 

  25. M.C. Bernard, A. Hugot-Le Goff, D. Massinon, N. Phillips, Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy. Corros. Sci. (1993). https://doi.org/10.1016/0010-938X(93)90356-L

    Article  Google Scholar 

  26. H. Marchebois, S. Joiret, C. Savall, J. Bernard, S. Touzain, Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy. Surf. Coatings Technol. 157, 151–161 (2002). https://doi.org/10.1016/S0257-8972(02)00147-0

    Article  Google Scholar 

  27. N. Sangiorgi, L. Aversa, R. Tatti, R. Verucchi, A. Sanson, Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Opt. Mater. (Amst) 64, 18–25 (2017). https://doi.org/10.1016/j.optmat.2016.11.014

    Article  ADS  Google Scholar 

  28. T. Nakamura, T. Suemasu, K.I. Takakura, F. Hasegawa, A. Wakahara, M. Imai, Investigation of the energy band structure of orthorhombic BaSi2 by optical and electrical measurements and theoretical calculations. Appl. Phys. Lett. 81, 1032–1034 (2002). https://doi.org/10.1063/1.1498865

    Article  ADS  Google Scholar 

  29. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  ADS  Google Scholar 

  30. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications. Sci. Rep. 7, 1–13 (2017). https://doi.org/10.1038/srep40167

    Article  ADS  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of—Ray Diffraction, 3rdrd edition edn. (Pearson Education Limited, Edinburgh, 2013)

    Google Scholar 

  32. P. Muhammed Shafi, A. Chandra Bose, Impact of crystalline defects and size on X-ray line broadening: a phenomenological approach for tetragonal SnO2 nanocrystals. AIP Adv. (2015). https://doi.org/10.1063/1.4921452

    Article  Google Scholar 

  33. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci 13(2011), 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  ADS  Google Scholar 

  34. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, D. Sastikumar, Size-strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Adv. 6, 90559–90570 (2016). https://doi.org/10.1039/c6ra20503h

    Article  Google Scholar 

  35. V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4866322

    Article  Google Scholar 

  36. L. Bergman, X.B. Chen, J. Huso, J.L. Morrison, H. Hoeck, Raman scattering of polar modes of ZnO crystallites. J. Appl. Phys. (2005). https://doi.org/10.1063/1.2126784

    Article  Google Scholar 

  37. C. Kranert, R. Schmidt-Grund, M. Grundmann, Surface- and point-defect-related Raman scattering in wurtzite semiconductors excited above the band gap. New J. Phys. (2013). https://doi.org/10.1088/1367-2630/15/11/113048

    Article  Google Scholar 

  38. O. Marin, M. Tirado, N. Budini, E. Mosquera, C. Figueroa, D. Comedi, Photoluminescence from c-axis oriented ZnO films synthesized by sol-gel with diethanolamine as chelating agent. Mater. Sci. Semicond. Process. (2016). https://doi.org/10.1016/j.mssp.2016.07.007

    Article  Google Scholar 

  39. H. Chen, J. Ding, W. Guo, G. Chen, S. Ma, Blue-green emission mechanism and spectral shift of Al-doped ZnO films related to defect levels. RSC Adv. 3, 12327 (2013). https://doi.org/10.1039/c3ra40750k

    Article  Google Scholar 

  40. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control the defect density. Nanoscale. 6, 10224–10234 (2014). https://doi.org/10.1039/C4NR01887G

    Article  ADS  Google Scholar 

  41. D.H. Kim, G.W. Lee, Y.C. Kim, Interaction of zinc interstitial with oxygen vacancy in zinc oxide: an origin of n-type doping. Solid State Commun. 152, 1711–1714 (2012). https://doi.org/10.1016/j.ssc.2012.06.016

    Article  ADS  Google Scholar 

  42. M. Asghar, K. Mahmood, I.T. Ferguson, M.Y.A. Raja, Y.H. Xie, R. Tsu, M.A. Hasan, Investigation of VO–Zni native donor complex in MBE grown bulk ZnO. Semicond. Sci. Technol. (2013). https://doi.org/10.1088/0268-1242/28/10/105019

    Article  Google Scholar 

  43. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447–5451 (1998). https://doi.org/10.1063/1.367375

    Article  ADS  Google Scholar 

  44. I. Bouanane, A. Kabir, D. Boulainine, S. Zerkout, G. Schmerber, B. Boudjema, Characterization of ZnO thin films prepared by thermal oxidation of zn. J. Electron. Mater. 45, 3307–3313 (2016). https://doi.org/10.1007/s11664-016-4469-6

    Article  ADS  Google Scholar 

  45. J. Husna, M. Mannir Aliyu, M. Aminul Islam, P. Chelvanathan, N. Radhwa Hamzah, M. Sharafat Hossain, M.R. Karim, N. Amin, Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia 25, 55–61 (2012). https://doi.org/10.1016/j.egypro.2012.07.008

    Article  Google Scholar 

  46. P.J. Montoya-Pelaez, R.S. Brown, Methanolysis of nitrocefin catalyzed by one and two Zn2+ ions. a simplified model for class B β-lactamases. Inorg. Chem. 41, 309–316 (2002). https://doi.org/10.1021/ic011005f

    Article  Google Scholar 

  47. E. Hosono, S. Fujihara, T. Kimura, H. Imai, Non-basic solution routes to prepare ZnO nanoparticles. J. Sol-Gel Sci. Technol. 29, 71–79 (2004). https://doi.org/10.1023/B:JSST.0000023008.14883.1e

    Article  Google Scholar 

  48. M. Ardon, A. Bino, Hydrogen oxide bridging ligands in a classiscal coordination compound. J. Am. Chem. Soc. 105, 7747–7748 (1983)

    Google Scholar 

  49. H. Cao, Z. Zhang, L. Wu, G. Zheng, A novel approach of preparing ZnO from ammoniacal leaching solution with high chlorine levels based on thermodynamic analysis. Hydrometallurgy 171, 306–311 (2017). https://doi.org/10.1016/j.hydromet.2017.06.005

    Article  Google Scholar 

  50. A. Babaei-dehkordi, J. Moghaddam, A. Mostafaei, An optimization study on the leaching of zinc cathode melting furnace slag in ammonium chloride by Taguchi design and synthesis of ZnO nanorods via precipitation methods. Mater. Res. Bull. 48, 4235–4247 (2013). https://doi.org/10.1016/j.materresbull.2013.06.077

    Article  Google Scholar 

  51. A. Moezzi, M. Cortie, A. Mcdonagh, Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide. Dalton Trans. 45, 7385–7390 (2016). https://doi.org/10.1039/c5dt04864h

    Article  Google Scholar 

  52. H. Tanaka, A. Fujioka, Influence of thermal treatment on the structure and adsorption properties of layered zinc hydroxychloride. Mater. Res. Bull. 45, 46–51 (2010). https://doi.org/10.1016/j.materresbull.2009.09.003

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by SCAIT-UNT (PIUNT E637), CONICET (PIP 411) and ANPCyT (FONCyT–BID PICT 2015-0865). We are grateful to Lic. Dolly Chemes and the LERA facility (CONICET–UNT) for enabling the microRaman measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar Marin or David Comedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, O., González, V., Budini, N. et al. The influence of methanol and NH4Cl on solvothermal ZnO synthesis and properties. Appl. Phys. A 126, 466 (2020). https://doi.org/10.1007/s00339-020-03636-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03636-w

Keywords

Navigation