Skip to main content
Log in

Enhanced visible light activity of EuFeO3/TiO2 nanocomposites prepared by thermal treatment–hydrolysis precipitation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper aimed to, through combination of TiO2 and a rare earth ferrite and EuFeO3 nanoparticles, synthesize a new visible light active photocatalyst. The EuFeO3/TiO2 nanocomposites were synthesized by a thermal treatment approach, in combination with a hydrolysis precipitation processing. The influences of concentration of TiO2 nanoparticles on morphological, magnetic and structural properties of EuFeO3/TiO2 nanocomposites were examined by different characterization techniques. Moreover, the optical characteristic of the synthesized samples was evaluated by UV–visible diffuse reflectance spectrophotometry. The nanocomposites’ photocatalytic activity was also assessed under the visible light (λ > 400 nm), considering Congo red molecules degradation. Considerable degradation efficiency was observed (68% after 30 min), especially after using EuFeO3/TiO2 nanocomposites ratio of 1:0.5. The performed analysis revealed that EuFeO3/TiO2 (1:0.5) nanocomposite could be structured in a way that led to a considerable redshift in the onset of light absorption in comparison with that of pure TiO2. The constructed EuFeO3–TiO2 heterojunction caused a considerable increase in the photocatalytic degradation of the target pollutant, as a result of occurred diminished in electron–hole recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Ibhadon, P. Fitzpatrick, Catalysts 3, 189 (2013)

    Article  Google Scholar 

  2. D.J. Martin, P.J.T. Reardon, S.J. Moniz, J. Tang, J. Am. Chem. Soc. 136, 12568 (2014)

    Article  Google Scholar 

  3. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Nanoscale 5, 3601 (2013)

    Article  ADS  Google Scholar 

  4. C.J. Dahlman, A. Agrawal, C.M. Staller, J. Adair, D.J. Milliron, Chem. Mater. 31, 502 (2019)

    Article  Google Scholar 

  5. I.-H. Yoo, S.S. Kalanur, H. Seo, Appl. Catal. B 250, 200 (2019)

    Article  Google Scholar 

  6. L.G. Devi, R. Kavitha, Appl. Surf. Sci. 360, 601 (2016)

    Article  ADS  Google Scholar 

  7. S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52, 7372 (2013)

    Article  Google Scholar 

  8. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  9. Y. Wang, R. Shi, J. Lin, Y. Zhu, Appl. Catal. B 100, 179 (2010)

    Article  Google Scholar 

  10. Y. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, J. Mater. Chem. 21, 4168 (2011)

    Article  Google Scholar 

  11. A.K. Choquette, R. Colby, E.J. Moon, C.M. Schlepütz, M.D. Scafetta, D.J. Keavney, S.J. May, Cryst. Growth Des. 15, 1105 (2015)

    Article  Google Scholar 

  12. R. Lin, Y. Liang, Inorg. Chem. Ind. 43, 20 (2011)

    Google Scholar 

  13. Y. Yang, Y. Liu, J. Wei, C. Pan, R. Xiong, J. Shi, RSC Adv. 4, 31941 (2014)

    Article  Google Scholar 

  14. M. Siemons, A. Leifert, U. Simon, Adv. Funct. Mater. 17, 2189 (2007)

    Article  Google Scholar 

  15. K. Sultan, M. Ikram, K. Asokan, RSC Adv. 5, 93867 (2015)

    Article  Google Scholar 

  16. J. Ding, X. Lü, H. Shu, J. Xie, H. Zhang, Mater. Sci. Eng., B 171, 31 (2010)

    Article  Google Scholar 

  17. A. Wu, H. Shen, J. Xu, L. Jiang, L. Luo, S. Yuan, S. Cao, H. Zhang, J. Sol-Gel. Sci. Technol. 59, 158 (2011)

    Article  Google Scholar 

  18. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)

    Article  Google Scholar 

  19. G.K. Rozenberg, M. Pasternak, W. Xu, L. Dubrovinsky, S. Carlson, R. Taylor, EPL (Europhysics Letters) 71, 228 (2005)

    Article  ADS  Google Scholar 

  20. Z. Liu, Y. Qi, C. Lu, J. Mater. Sci.: Mater. Electron. 21, 380 (2010)

    ADS  Google Scholar 

  21. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Powder Technol. 212, 80 (2011)

    Article  Google Scholar 

  22. H. Rezaei-Vahidian, A.R. Zarei, A.R. Soleymani, J. Hazard. Mater. 325, 310 (2017)

    Article  Google Scholar 

  23. J. Kemeng, H. Dai, J. Deng, H. Jiang, L. Zhang, H. Zhang, Y. Cao, Catalytic Removal of Toluene Over Three-Dimensionally Ordered Macroporous Eu1xSrxFeO3, vol. 214 (2013)

  24. P. Tang, H. Chen, C. Lv, K. Wang, Y. Wang, Integr. Ferroelectr. 181, 49 (2017)

    Article  Google Scholar 

  25. M. Florea, M. Alifanti, V. Kuncser, D. Macovei, N. Apostol, P. Granger, V.I. Parvulescu, J. Catal. 316, 130 (2014)

    Article  Google Scholar 

  26. Ž. Antić, R.M. Krsmanović, M.G. Nikolić, M. Marinović-Cincović, M. Mitrić, S. Polizzi, M.D. Dramićanin, Mater. Chem. Phys. 135, 1064 (2012)

    Article  Google Scholar 

  27. N. Ghows, M.H. Entezari, Ultrason. Sonochem. 18, 629 (2011)

    Article  Google Scholar 

  28. Y. Bessekhouad, D. Robert, J. Weber, J. Photochem. Photobiol., A 163, 569 (2004)

    Article  Google Scholar 

  29. L. Ju, Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, J. Am. Ceram. Soc. 94, 3418 (2011)

    Article  Google Scholar 

  30. K. Jahanara, S. Farhadi, RSC advances 9, 15615 (2019)

    Article  Google Scholar 

  31. Y. Chen, H. Chen, L. Guo, Q. He, F. Chen, J. Zhou, J. Feng, J. Shi, ACS Nano 4, 529 (2009)

    Article  Google Scholar 

  32. K. Ji, H. Dai, J. Deng, H. Zhang, L. Zhang, H. Jiang, Solid State Sci. 27, 36 (2014)

    Article  Google Scholar 

  33. D. Seifu, L. Takacs, A. Kebede, J. Magn. Magn. Mater. 302, 479 (2006)

    Article  ADS  Google Scholar 

  34. J. Mu, B. Chen, M. Zhang, Z. Guo, P. Zhang, Z. Zhang, Y. Sun, C. Shao, Y. Liu, ACS Appl. Mater. Interfaces. 4, 424 (2011)

    Article  Google Scholar 

  35. M. Zhang, C. Shao, J. Mu, Z. Zhang, Z. Guo, P. Zhang, Y. Liu, CrystEngComm 14, 605 (2012)

    Article  Google Scholar 

  36. Y. Zhang, L. Fei, X. Jiang, C. Pan, Y. Wang, J. Am. Ceram. Soc. 94, 4157 (2011)

    Article  Google Scholar 

  37. A. Zhu, Q. Zhao, X. Li, Y. Shi, ACS Appl. Mater. Interfaces. 6, 671 (2013)

    Article  Google Scholar 

  38. S. Li, Y.-H. Lin, B.-P. Zhang, J.-F. Li, C.-W. Nan, J. Appl. Phys. 105, 054310 (2009)

    Article  ADS  Google Scholar 

  39. A. Habibi-Yangjeh, M. Shekofteh-Gohari, Sep. Purif. Technol. 184, 334 (2017)

    Article  Google Scholar 

  40. T. Xie, L. Xu, C. Liu, J. Yang, M. Wang, Dalton Trans. 43, 2211 (2014)

    Article  Google Scholar 

  41. D. Hou, X. Hu, P. Hu, W. Zhang, M. Zhang, Y. Huang, Nanoscale 5, 9764 (2013)

    Article  ADS  Google Scholar 

  42. F.X. Xiao, S.F. Hung, J. Miao, H.Y. Wang, H. Yang, B. Liu, Small 11, 554 (2015)

    Article  Google Scholar 

  43. H. Ji, Y. Fan, J. Yan, Y. Xu, X. She, J. Gu, T. Fei, H. Xu, H. Li, RSC Adv.s 7, 36101 (2017)

    Article  Google Scholar 

  44. O. Ruzimuradov, M. Hojamberdiev, C. Fasel, R. Riedel, J. Alloy. Compd. 699, 144 (2017)

    Article  Google Scholar 

  45. A.-A. Hoseini, S. Farhadi, A. Zabardasti, F. Siadatnasab, RSC Adv. 9, 24489 (2019)

    Article  Google Scholar 

  46. X. Niu, H. Li, G. Liu, J. Mol. Catal. A: Chem. 232, 89 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We express thanks the authorities of Malayer University and Lorestan University for providing the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abedin Zabardasti or Mahmoud Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarikhani, F., Zabardasti, A., Soleymani, A.R. et al. Enhanced visible light activity of EuFeO3/TiO2 nanocomposites prepared by thermal treatment–hydrolysis precipitation method. Appl. Phys. A 126, 476 (2020). https://doi.org/10.1007/s00339-020-03593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03593-4

Keywords

Navigation