Skip to main content
Log in

Electronic and optical properties of stanane and armchair stanane nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we performed a density functional theory based investigation of the structural, electronic, and optical properties of a stanane, fully hydrogenated stanene SnH, and armchair stanane nanoribbons ASnHNRs. Our full geometry optimization calculations show stanane has 0.84 Å buckled height and the buckled structure is preserved in ASnHNRs. The optimized lattice parameter of stanane, Sn–Sn, and Sn–H bond length are 4.58 Å, 2.75Å, and 1.73 Å, respectively. Electronic structure calculations show that stanane is a moderate-band-gap semiconductor with a direct band gap of 1.2 eV and ASnHNRs are wide-band-gap semiconductors. The band gap of ASnHNRs decreases as the ribbons width increases. We investigated the optical properties for two directions of polarization. For perpendicular-polarized light, the imaginary part of dielectric function \(\varepsilon _2(\omega )\) of stanane peaks between 5 and 10 eV; while for the parallel-polarized light, the peaks are seen in a wide range of energy. According to the results, stanane is a good absorptive matter, especially for visible regions of the electromagnetic spectrum. The presence of anisotropy with respect to the type of light polarization is observed in ASnHNRs also. In these structures, the main peak of \(\varepsilon _2(\omega )\) is located at 3.4 eV for parallel- and in 6–8 eV for perpendicular-polarized light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005). https://doi.org/10.1038/nature04235

    Article  ADS  Google Scholar 

  2. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  ADS  Google Scholar 

  3. Y.S. Dedkov, M. Fonin, Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 12(12), 125004 (2010). https://doi.org/10.1088/1367-2630/12/12/125004

    Article  ADS  Google Scholar 

  4. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877–880 (2009). https://doi.org/10.1038/nature07919

    Article  ADS  Google Scholar 

  5. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Energy. Phys. Rev. Lett. 98(20), 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805

    Article  ADS  Google Scholar 

  6. Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Graphene nano-ribbon electronics. Phys. E Low-dimension. Syst. Nanostruct. 40(2), 228–232 (2007). https://doi.org/10.1016/j.physe.2007.06.020

    Article  ADS  Google Scholar 

  7. V. Barone, O. Hod, G.E. Scuseria, Electronic. Nano Lett. 6, 2748–2754 (2006). https://doi.org/10.1021/nl0617033

    Article  ADS  Google Scholar 

  8. C. Ataca, S. Ciraci, Perpendicular growth of carbon chains on graphene from first-principles. Phys. Rev. B 83(23), 235417 (2011). https://doi.org/10.1103/PhysRevB.83.235417

    Article  ADS  Google Scholar 

  9. A.M. Suarez, Theory and simulation of atomic hydrogen, fluorine, and oxygen on graphene. https://etda.libraries.psu.edu/catalog/15218

  10. Z. Wang, J. Xiao, M. Li, Adsorption of transition metal atom on zigzag graphene nanoribbon. Appl. Phys. A 110(1), 235–239 (2013). https://doi.org/10.1007/s00339-012-7119-8

    Article  ADS  Google Scholar 

  11. Y.H. Lu, W. Chen, Y.P. Feng, P.M. He, T. Tuning, J. Phys. Chem. B 113(1), 2–5 (2009). https://doi.org/10.1021/jp806905e

    Article  Google Scholar 

  12. V. Barone, O. Hod, G.E. Scuseria, Electronic. Nano Lett. 6(12), 2748–2754 (2006). https://doi.org/10.1021/nl0617033

    Article  ADS  Google Scholar 

  13. A. Martín, P. Batalla, J. Hernández-Ferrer, M.T. Martínez, A. Escarpa, Graphene oxide nanoribbon-based sensors for the simultaneous bio-electrochemical enantiomeric resolution and analysis of amino acid biomarkers. Biosens. Bioelectron. 68, 163–167 (2015)

    Google Scholar 

  14. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967

    Article  ADS  Google Scholar 

  15. S. Guo, Graphene-Based Material Systems for Nanoelectronics and Energy Storage Devices, Ph.D. thesis, UC Riverside (2012). https://escholarship.org/uc/item/0qk8m6q5

  16. A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, M. Affronte, Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11(7), 2634–2639 (2011). https://doi.org/10.1021/nl2006142

    Article  ADS  Google Scholar 

  17. Y.-E. Yang, Y.-R. Yang, X.-H. Yan, Universal optical properties of graphane nanoribbons: a first-principles study. Phys. E Low-dimension. Syst. Nanostruct. 44, 1406–1409 (2012). https://doi.org/10.1016/j.physe.2012.03.002

    Article  ADS  Google Scholar 

  18. Y. Li, Z. Zhou, P. Shen, Z. Chen, Structural and electronic properties of graphane nanoribbons. J. Phys. Chem. C 113(33), 15043–15045 (2009). https://doi.org/10.1021/jp9053499

    Article  Google Scholar 

  19. H. Okamoto, Y. Sugiyama, H. Nakano, Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem. Eur. J. 17(36), 9864–9887 (2011). https://doi.org/10.1002/chem.201100641

    Article  Google Scholar 

  20. F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H. Liu, D. Qian, S.-C. Zhang, J.-F. Jia, Epitaxial growth of two-dimensional stanene. Nat. Mater. 14(10), 1020–1025 (2015). https://doi.org/10.1038/nmat4384

    Article  ADS  Google Scholar 

  21. S. Saxena, R.P. Chaudhary, S. Shukla, Stanene: atomically thick free-standing layer of 2d hexagonal tin. Sci. Rep. 6, 31073 (2016). https://doi.org/10.1038/srep31073

    Article  ADS  Google Scholar 

  22. M. Modarresi, A. Kakoee, Y. Mogulkoc, M.R. Roknabadi, Effect of external strain on electronic structure of stanene. Comput. Mater. Sci. 101, 164–167 (2015). https://doi.org/10.1016/j.commatsci.2015.01.039

    Article  Google Scholar 

  23. N.J. Roome, J.D. Carey, Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl. Mater. Interfaces 6, 7743–7750 (2014). https://doi.org/10.1021/am501022x

    Article  Google Scholar 

  24. M. Fadaie, N. Shahtahmassebi, M.R. Roknabad, Effect of external electric field on the electronic structure and optical properties of stanene. Opt. Quant. Electron. 48(9), 440 (2016). https://doi.org/10.1007/s11082-016-0709-5

    Article  Google Scholar 

  25. W. Wei, Y. Dai, B. Huang, T. Jacob, Many-body effects in silicene, silicane, germanene and germanane. Phys. Chem. Chem. Phys. 15(22), 8789–8794 (2013). https://doi.org/10.1039/C3CP51078F

    Article  Google Scholar 

  26. K.L. Low, W. Huang, Y. Yeo, G. Liang, Ballistic transport performance of silicane and germanane transistors. IEEE Trans. Electron. Dev. 61(5), 1590–1598 (2014). https://doi.org/10.1109/TED.2014.2313065

    Article  ADS  Google Scholar 

  27. H.L. Zhuang, A.K. Singh, R.G. Hennig, Computational discovery of single-layer III–V materials. Phys. Rev. B 87, 165145 (2013)

    Google Scholar 

  28. B. Peng, D. Zhang, H. Zhang, H. Shao, G. Ni, Y. Zhu, H. Zhu, The conflicting role of buckled structure in phonon transport of 2d group-IV and group-V materials. Nanoscale 9(22), 7397–7407 (2017)

    Google Scholar 

  29. B. Peng, H. Zhang, H. Shao, Y. Xu, X. Zhang, H. Zhu, Low lattice thermal conductivity of stanene. Sci. Rep. 6, 20225 (2016)

    ADS  Google Scholar 

  30. P.B. Johnson, R.W. Christy, Optical. Phys. Rev. B 6(12), 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  31. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, J. Wills, Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric nano 2. Phys. Rev. B 59(3), 1776 (1999)

    ADS  Google Scholar 

  32. S.-S. Li, C.-W. Zhang, Tunable electronic structures and magnetic properties in two-dimensional stanene with hydrogenation. Mater. Chem. Phys. 173, 246–254 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.010

    Article  Google Scholar 

  33. M. Fadaie, N. Shahtahmassebi, M.R. Roknabad, O. Gulseren, First-principles investigation of armchair stanene nanoribbons. Phys. Lett. A 382(4), 180–185 (2018). https://doi.org/10.1016/j.physleta.2017.11.018

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No.  (117F097) and by the EU-COST Action (CA16221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojde Fadaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadaie, M., Dideban, D. & Gülseren, O. Electronic and optical properties of stanane and armchair stanane nanoribbons. Appl. Phys. A 126, 460 (2020). https://doi.org/10.1007/s00339-020-03584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03584-5

Keywords

Navigation