Skip to main content
Log in

Effects of metal content on electrical and physical properties in solution-processed IGZO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The on-current of indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) fabricated by solution process with low-temperature post-annealing increases monotonically with the decrease in the Ga content. This trend is different from that of IGZO fabricated by a solution process, which shows the maximum electron mobility at a Ga content of 33%. To clarify its cause, effects of Ga and In contents in solution-processed IGZO post-annealed at a low-temperature on their oxygen deficiency and band structures were investigated with spectroscopic methods such as X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, photoluminescence, and ultraviolet–visible absorption. When the Ga content is low, the oxygen vacancy becomes less abundant. The increase in In content exhibits similar effects on the oxygen vacancy. We have reported that Ga is not oxidized sufficiently at low temperatures, which should cause the generation of oxygen vacancies. By this theory, the above-mentioned decrease in oxygen vacancies can be explained. Furthermore, when these films are actually used as TFT channels, the on-current increases with the decrease in Ga content. From this, in solution-processed IGZO post-annealed at a low temperature, oxygen vacancies mainly act as electron traps that decrease the on-current, rather than acting as donors. In manufacturing flexible devices, even when we decrease the process temperature low enough to suppress the damage to polymer substrates, the devices must maintain good performance. Our results suggest that an optimal metal ratio different from that of a typical vacuum process is necessary to improve the performance of IGZO TFTs fabricated by the low-temperature solution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    ADS  Google Scholar 

  2. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006)

    ADS  Google Scholar 

  3. T. Kamiya, H. Hosono, NPG Asia Mater. 2, 15 (2010)

    Google Scholar 

  4. Y. Nakajima, M. Nakata, T. Takei, H. Fukagawa, G. Motomura, H. Tsuji, T. Shimizu, Y. Fujisaki, T. Kurita, T. Yamamoto, J. Soc. Inf. Disp. 22, 137 (2014)

    Google Scholar 

  5. M. Nag, A. Bhoolokam, S. Smout, M. Willegems, R. Muller, K. Myny, S. Schols, M. Ameys, J. Genoe, T.H. Ke, P. Vicca, T. Ellis, B. Cobb, A. Kumar, J.L. van der Steen, G. Gelinck, Y. Fukui, K. Obata, G. Groeseneken, P. Heremans, S. Steudel, J. Soc. Inf. Disp. 22, 509 (2014)

    Google Scholar 

  6. M. Berggren, D. Nilsson, N.D. Robinson, Nat. Mater. 6, 3 (2007)

    ADS  Google Scholar 

  7. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R.H. Friend, Thin Solid Films 438, 279 (2003)

    ADS  Google Scholar 

  8. C.-G. Lee, A. Dodabalapur, Appl. Phys. Lett. 96, 243501 (2010)

    ADS  Google Scholar 

  9. C.G. Choi, S.-J. Seo, B.-S. Bae, Electrochem. Solid-State Lett. 11, H7 (2008)

    Google Scholar 

  10. J.H. Lim, J.H. Shim, J.H. Choi, J. Joo, K. Park, H. Jeon, M.R. Moon, D. Jung, H. Kim, H.-J. Lee, Appl. Phys. Lett. 95, 012108 (2009)

    ADS  Google Scholar 

  11. G.H. Kim, H.S. Kim, H.S. Shin, B.D. Ahn, K.H. Kim, H.J. Kim, Thin Solid Films 517, 4007 (2009)

    ADS  Google Scholar 

  12. Y. Ochiai, T. Morimoto, N. Fukuda, and Y. Ohki, in presented at 77th Japan Society of Applied Physics (JSAP) Autumn Meeting, 2016 15p-A22-7 (in Japanese)

  13. M. Onoue, S. Ogura, Y. Kusaka, N. Fukuda, N. Yamamoto, K. Kojima, K. Chikama, Y. Ushijima, Jpn. J. Appl. Phys 56, 05EB07 (2017)

    Google Scholar 

  14. S. Ogura, H. Cheong, S. Uemura, H. Ushijima, N. Fukuda, Flex. Print. Electron. 1, 045001 (2016)

    Google Scholar 

  15. N. Fukuda, S. Ogura, K. Abe, and H. Ushijima, MRS Proc. 1731, mrsf14-1731-o03-05 (2015)

  16. H.J. Cheong, N. Fukuda, S. Ogura, H. Sakai, M. Yoshida, T. Kodzasa, H. Tokuhisa, K. Tokoro, K. Takeuchi, R. Nagahata, T. Nakamura, S. Uemura, J. Photopolym. Sci. Technol. 27, 339 (2014)

    Google Scholar 

  17. N. Fukuda, Y. Watanabe, S. Uemura, Y. Yoshida, T. Nakamura, H. Ushijima, J. Mater. Chem. C 2, 2448 (2014)

    Google Scholar 

  18. N. Fukuda, S. Ogura, K. Nomura, H. Ushijima, MRS Proc. 1547, 123 (2013)

    Google Scholar 

  19. N. Fukuda, Y. Watanabe, S. Uemura, Y. Yoshida, T. Nakamura, H. Ushijima, J. Mater. Chem. C2, 2448–2454 (2014)

    Google Scholar 

  20. H.J. Cheong, N. Fukuda, H. Sakai, S. Ogura, K. Takeuchi, R. Nagahata, S. Uemura, Jpn. J. Appl. Phys. 53, 05HA12 (2014)

    Google Scholar 

  21. H.J. Cheong, S. Ogura, M. Yoshida, H. Ushijima, N. Fukuda, S. Uemura, J. Photopolym. Sci. Technol. 28, 353 (2015)

    Google Scholar 

  22. H. Cheong, S. Ogura, H. Ushijima, M. Yoshida, N. Fukuda, S. Uemura, AIP Adv. 5, 067127 (2015)

    ADS  Google Scholar 

  23. J.H. Choi, S.M. Hwang, C.M. Lee, J.C. Kim, G.C. Park, J. Joo, J.H. Lim, J. Cryst. Growth 326, 175 (2011)

    ADS  Google Scholar 

  24. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10, 45 (2011)

    ADS  Google Scholar 

  25. J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. D. Shieh, Fellow. IEEE, P. T. Liu, Senior Member. IEEE, and Y. P. Huang, IEEE Trans. Electron Dev. 58, 1121 (2011)

  26. Y. Takamori, T. Morimoto, N. Fukuda, Y. Ohki, AIP Adv. 8, 115304 (2018)

    ADS  Google Scholar 

  27. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    ADS  Google Scholar 

  28. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)

    Google Scholar 

  29. M.J. Zheng, L.D. Zhang, G.H. Li, X.Y. Zhang, X.F. Wang, Appl. Phys. Lett. 79, 839 (2001)

    ADS  Google Scholar 

  30. S. Luo, J. Fan, W. Liu, M. Zhang, Z. Song, C. Lin, X. Wu, P.K. Chu, Nanotechnology 17, 1695 (2006)

    ADS  Google Scholar 

  31. E. Hirata, K. Tamagawa, Y. Ohki, Jpn. J. Appl. Phys. 49, 091102 (2010)

    ADS  Google Scholar 

  32. T. Morimoto, M. Harima, Y. Horii, Y. Ohki, Nucl. Instrum. Meth. B 366, 198 (2016)

    ADS  Google Scholar 

  33. T. Morimoto, Y. Kuroda, Y. Ohki, Appl. Phys. A 122, 790 (2016)

    ADS  Google Scholar 

  34. S. Kaneko, T. Morimoto, Y. Ohki, Jpn. J. Appl. Phys 54, 06GC03 (2015)

    Google Scholar 

  35. T. Morimoto, M. Takase, T. Ito, H. Kato, Y. Ohki, Jpn. J. Appl. Phys. 47, 6858 (2008)

    ADS  Google Scholar 

  36. K.S. Seol, A. Ieki, Y. Ohki, H. Nishikawa, M. Tachimori, J. Appl. Phys. 79, 412 (1996)

    ADS  Google Scholar 

  37. H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, D.C. Look, Appl. Phys. Lett. 77, 3761 (2000)

    ADS  Google Scholar 

  38. J. Koezuka, K. Okazaki, T. Hirohashi, M. Takahashi, S. Adachi, M. Tsubuku, S. Yamazaki, Y. Kanzaki, H. Matsukizono, S. Kaneko, S. Mori, T. Matsuo, S.I.D. Symp, Dig. Tech. Pap. 44, 723 (2013)

    Google Scholar 

  39. Y. Ochiai, T. Morimoto, N. Fukuda, Y. Ohki, in presented at 64th Japan Society of Applied Physics Spring Meeting 2017, 17a-A502-1 (2017) (in Japanese)

  40. B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, G. Zhang, Langmuir 2006, 9380 (2006)

    Google Scholar 

  41. T. Morimoto, N. Fukuda, Y. Ohki, in presented at 64th Japan Society of Applied Physics Spring Meeting 2017, 14p-421-1 (2017) (in Japanese)

  42. S. Kanazawa, T. Ito, K. Yamada, T. Ohkubo, Y. Nomoto, T. Ishihara, Y. Takita, Surf. Coat. Technol. 169–170, 508–511 (2003)

    Google Scholar 

  43. T. Ohshima, S. Nakashima, T. Ueda, H. Kawasaki, Y. Suda, K. Ebihara, Thin Solid Films 506–507, 106–110 (2006)

    ADS  Google Scholar 

  44. L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Sto¨ßel, J. Simmerer, Synthetic Metals 111, 315 (2000)

    Google Scholar 

  45. H.W. Park, A. Song, D. Choi, H.J. Kim, J.Y. Kwon, K.B. Chung, Sci. Rep. 7, 11634 (2017)

    ADS  Google Scholar 

  46. H. Jeong, J. Heo, J. Kyoung, C.-W. Baik, S. Park, S.W. Hwang, C.-W. Lee, J. Sol. Stat. Sci. Technol. 4, N131 (2015)

    Google Scholar 

  47. K. Ide, Y. Kikuchi, K. Nomura, T. Kamiya, H. Hosono, Thin Solid Films 520, 3787 (2012)

    ADS  Google Scholar 

  48. J.-W. Jeon, D.-W. Jeon, T. Sahoo, M. Kim, J.-H. Baek, J.L. Hoffman, N.S. Kim, I.-H. Lee, J. Alloys Comp. 509, 10062 (2011)

    Google Scholar 

  49. M. Girtan, Mater. Sci. Eng., B 118, 175 (2005)

    Google Scholar 

  50. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    ADS  Google Scholar 

  51. M.F. Al-Kuhaili, S.M.A. Durrani, E.E. Khawaja, Appl. Phys. Lett. 83, 4533 (2003)

    ADS  Google Scholar 

  52. C. Chen, T.C. Chang, T.Y. Hsieh, C.T. Tsai, S.C. Chen, C.S. Lin, F.Y. Jian, M.Y. Tsai, Thin Solid Films 520, 1422 (2011)

    ADS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by JSPS KAKENHI Grant Number 17K18177. The PL experiments were conducted mainly in the UVSOR Facility, Institute for Molecular Science, Okazaki, Japan. We are grateful to Masaki Ito of the Materials Characterization Central Laboratory, Waseda University, for his support for the XPS measurements and to Yoko Kasuya and Shintaro Ogura in AIST for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Morimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The O1s XPS spectra measured for the IGZO films with different contents of Ga and those with different contents of In, shown in Figs. 2d and 3d, respectively, were separated into three Gaussian component peaks with their maxima at 530, 531, and 532 eV. The results are shown in Figs. 16 and 17. For each sample, the intensity integrated with respect to the binding energy was calculated for the whole O1s spectrum and each component. Then, the ratio of the integrated intensity of each component to that of the whole spectrum is plotted in Fig. 6.

Fig. 16
figure 16

(Color online) O1s XPS spectra observed in IGZO films with Ga contents of 0 (a), 10 (b), 20 (c), 40 (d), 60 (e), and 80 (f) mol  %. The curves in each figure represent the spectrum measured (solid black) and components due to oxygens bonded with metal (broken red), oxygens adjacent to oxygen vacancies (chain blue), and oxygens bonded weakly to the surface (dotted green). The broken pink curves are the spectra reproduced by the three components

Fig. 17
figure 17

(Color online) O1s XPS spectra observed in IGZO films with In contents of 0 (a), 20 (b), 40 (c), 60 (d), and 80 (e) mol  %. The notations of curves are the same as those in Fig. 16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, T., Yang, Y., Ochiai, Y. et al. Effects of metal content on electrical and physical properties in solution-processed IGZO thin films. Appl. Phys. A 126, 388 (2020). https://doi.org/10.1007/s00339-020-03579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03579-2

Keywords

Navigation