Skip to main content
Log in

An investigation of third-order nonlinear optical and limiting properties of spray pyrolysis-deposited Co:CdS nanostructures for optoelectronics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cobalt (Co)-doped CdS thin films were deposited and successfully grown by the chemical reactive spray pyrolysis technique with different Co-doping levels [(Cd1−xCoxS) in ‘x’ ratios of 0.00, 0.01, 0.05 and 0.1 wt%] on heated glass substrates at 350 °C. The effect of Co content on nonlinear optical (NLO) properties was investigated by the DPSS continuous wave laser at 532 nm using the Z-scan technique. Powder-XRD analysis confirms the samples that have cubic structure with no impurity phases. The energy gap (Eg) of the prepared films was estimated and was found to be decreased by 2%, i.e., in the range from 2.50 to 2.30 eV. The room-temperature photoluminescence spectra were recorded at λexc = 275 nm and an intense blue emissions were observed at 430 ± 15 nm for undoped CdS and Co:CdS films. The Z-scan result reveals that reverse saturable absorption and self-defocusing nature are the attributed and observed nonlinearity of the prepared nanostructures. The nonlinear absorption coefficient, refractive index and third-order NLO susceptibility were determined and found in the range from 1.89 × 10−3 to 7.26 × 10−3 (cm W−1), 2.03 × 10−8 to 2.96 × 10−8 (cm2 W−1) and 1.21 × 10−6 to 6.95 × 10−6 (esu) correspondingly. An optical limiting topographies of the prepared films were explored and the limiting thresholds are also calculated at the experimental wavelength. These important results of NLO parameters are due to the increase in localized defect states on grain boundaries with the increase in Co-doping and suggest that these films are promising material for optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.K. Ampong, J.A.M. Awudza, R.K. Nkum, F. Boakye, P.J. Thomas, P. O’Brien, Solid State Sci. 40, 50–54 (2015)

    Article  ADS  Google Scholar 

  2. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, J. Phys. Chem. Solids 130, 189–196 (2019)

    Article  ADS  Google Scholar 

  3. Y. Zhao, M. Yuan, Y. Chen, Y. Huang, J. Lian, S. Cao, H. Li, L. Wu, Ceram. Int. 44, 2407–2412 (2018)

    Article  Google Scholar 

  4. S. Mageswari, L. Dhivya, B. Palanivel, R. Murugan, J Alloys Compd. 545, 41–45 (2012)

    Article  Google Scholar 

  5. J. Bi, W. Ling, Y. Zhang, Z. Li, J. Li, F. Xianzhi, Appl. Catal. B Environ. 91, 135–143 (2009)

    Article  Google Scholar 

  6. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Phys. B 555, 145–151 (2019)

    Article  ADS  Google Scholar 

  7. R. Bairy, A. Jayarama, G.K. Shivakumar, K. Radhakrishnan, U.K. Bhat, J. Mater. Sci. Mater. Electron. 30, 6993–7004 (2019)

    Article  Google Scholar 

  8. Z. Raza Khan, M.M. Shkir, A.S. Alshammari, V. Ganesh, S. Alfaify, M. Gandouzi, J. Electron. Mater. 26, 2078 (2018)

    Google Scholar 

  9. A.A. Yadav, M.A. Barote, E.U. Masumdar, Solid State Sci. 12, 1173–1177 (2010)

    Article  ADS  Google Scholar 

  10. J.N. Alexander, S. Higashiya, D. Caskey, H. Efstathiadis, P. Haldar, Sol. Energy Mater. Sol. Cells 125, 47–53 (2014)

    Article  Google Scholar 

  11. A. Singh, S. Schipmann, A. Mathur, D. Pal, A. Sengupta, U. Klemradt, S. Chattopadhyay, Appl. Surf. Sci. 414, 114–123 (2017)

    Article  ADS  Google Scholar 

  12. S.B. Qadri, H. Kim, H.R. Khan, A. Pique, J.S. Horwitz, D. Chrisey, W.J. Kim, E.F. Skelton, Thin Solid Films 750, 377–378 (2000)

    Google Scholar 

  13. H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27, 85–111 (2004)

    Article  Google Scholar 

  14. M.S. Deora, S. Sharma, Thin Solid Films 670, 68–75 (2019)

    Article  ADS  Google Scholar 

  15. L.P. Colletti, B.H. Flowers, J.L. Stickney, J. Electrochem. Soc. 145, 1442–1449 (1998)

    Article  ADS  Google Scholar 

  16. D.S. Boyle, O. Robbe, D.P. Halliday, M.R. Heinrich, A. Bayer, P. O’Brien, D.J. Otway, M.D.G. Potter, J. Mater. Chem. 10, 2439–2441 (2000)

    Article  Google Scholar 

  17. S.N. Garaje, S.K. Apte, S.D. Naik, J.D. Ambekar, R.S. Sonawane, M.V. Kulkarni, A. Vinu, B.B. Kale, Environ. Sci. Technol. 47, 6664–6672 (2013)

    Article  ADS  Google Scholar 

  18. A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  ADS  Google Scholar 

  19. K.J. Kim, Y.R. Park, J. Appl. Phys. 94, 867–869 (2003)

    Article  ADS  Google Scholar 

  20. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974), p. 159

    Book  Google Scholar 

  21. T.D. Dzhafarov, F. Ongul, I. Karabay, J. Phys. D Appl. Phys. 39, 3221–3225 (2006)

    Article  ADS  Google Scholar 

  22. S.D. Chavhan, S. Senthilarasu, S.-H. Lee, Appl. Surf. Sci. 254, 4539–4545 (2008)

    Article  ADS  Google Scholar 

  23. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, S. AlFaify, Ceram. Int. 45, 10133–10141 (2019)

    Article  Google Scholar 

  24. M.A. Manthrammel, V. Ganesh, S. Mohd, I.S. Yahia, S. Alfaify, Mater. Res. Express 6, 025022 (2019)

    Article  ADS  Google Scholar 

  25. M. Frumar, J. Jedelsky, B. Frumarova, T. Wagner, M. Hrdlicka, J. Non Cryst. Solids 326, 399–404 (2003)

    Article  ADS  Google Scholar 

  26. H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    Google Scholar 

  27. M. Frumar, J. Jedelský, B. Frumarová, T. Wágner, M. Hrdlička, J. Non. Cryst. Solids 326–327, 399–404 (2016)

    Google Scholar 

  28. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. 26, 760–769 (1990)

    Article  Google Scholar 

  29. R. Bairy, P.S. Patil, S.R. Maidur, H. Vijeth, M.S. Murari, K. Udaya Bhat, RSC Adv. 9, 22302 (2019)

    Article  Google Scholar 

  30. H. Yang, Saturable Absorption and Two Photon Absorption in Graphene, National University of Singapore. PhD Thesis (2012)

  31. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017 (2012)

    Article  ADS  Google Scholar 

  32. S. Thongrattanasiri, F.H.L. Koppens, F.J. García de Abajo, Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  33. Q. Bao, H. Zhang, Y. Wang et al., Atomic-layer craphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009)

    Article  Google Scholar 

  34. J. Sebastian, J. Prakash, G. Vinitha, R. Murugesan, K. Rajamanickam, Opt. Mater. 72, 821–827 (2017)

    Article  Google Scholar 

  35. M. Rajabi, F. Abrinaei, Opt. Laser Technol. 109, 131–138 (2019)

    Article  ADS  Google Scholar 

  36. B. Raghavendra, A. Jayarama, D.K. Suresh, M.S. Murari, H. Vijeth, Mater. Res. Express 6(9), 096447 (2019)

    ADS  Google Scholar 

  37. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, A.B. Ul Haq, P.S. Almohammedi, S.R. Patil, S.A. Maidur, Opt. Laser Technol. 108, 609 (2018)

    Article  ADS  Google Scholar 

  38. G. Ravinder, C. Sreelatha, V. Ganesh, M. Shkir, M.A. Anis, C.R. Rao, Mater. Res. Express 6(9), 096403 (2019)

    Article  ADS  Google Scholar 

  39. Z.R. Khan, M. Shkir, A.S. Alshammari, V. Ganesh, S. AlFaify, M. Gandouzi, J. Electron. Mater. 1, 1–11 (2019)

    Google Scholar 

  40. N.K.M. Naga Srinivas, S. Venugopal Rao, D.V.G.L.N. Rao, B.K. Kimball, M. Nakashima, B.S. Decristofano, D. Narayana Rao, J. Porphyr. Phthalocya. 5, 549–554 (2001)

    Article  Google Scholar 

  41. M. Shkir, S.S. Shaikh, S. AlFaify, J. Mater. Sci. Mater. Electron. 30(2), 1–12 (2019)

    Google Scholar 

Download references

Acknowledgements

The author Dr. Bairy would like to acknowledge NMAMIT Nitte, India for providing all the research facilities and support to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Bairy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairy, R., Kulkarni, S.D., Murari, M.S. et al. An investigation of third-order nonlinear optical and limiting properties of spray pyrolysis-deposited Co:CdS nanostructures for optoelectronics. Appl. Phys. A 126, 380 (2020). https://doi.org/10.1007/s00339-020-03549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03549-8

Keywords

Navigation