Skip to main content
Log in

Investigating the formation of the single-layer nano-granular film assisted by hypergravity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hypergravity-assisted chemical liquid deposition (HACLD) is an effective method to increase the density of and improve the flatness of the films prepared using chemical reaction. Here, we have demonstrated the entire HACLD film deposition process and explained the film deposition mechanism, which had not been shown before. In this paper, HACLD method was utilized to deposit silver (Ag) films on the inner surface of quartz tubes for exploring the film formation process. One of the obtained Ag films exhibited a structure of uniformly distributed nanoparticles (NPs) with the mean size of about 50 nm. The film-forming mechanism of the single-layer nano-granular film prepared with HACLD method was revealed by studying the film-forming process, the effects of the hypergravity and the temperature distribution on the growth process of Ag NPs. This attempt may provide an understanding of the film-forming mechanism in hypergravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Shen, Z. He: Jpn. J. Appl. Phys.. 58 (4) (2019)

  2. A.V. Pshyk, E. Coy, M. Kempiński, B. Scheibe, S. Jurga, Mater. Res. Lett. 7(6), 244 (2019)

    Article  Google Scholar 

  3. I.Y. Ahmet, M. Guc, Y. Sánchez, M. Neuschitzer, V. Izquierdo-Roca, E. Saucedo, A.L. Johnson, RSC Adv. 9(26), 14899 (2019)

    Article  Google Scholar 

  4. C. Deferm, J.C. Malaquias, B. Onghena, D. Banerjee, J. Luyten, H. Oosterhof, J. Fransaer, K. Binnemans, Green Chem. 21(6), 1517 (2019)

    Article  Google Scholar 

  5. H. Van Bui, F. Grillo, J.R. van Ommen, Chem. Commun. 53(1), 45 (2017)

    Article  Google Scholar 

  6. F. Muench, E.-M. Felix, M. Rauber, S. Schaefer, M. Antoni, U. Kunz, H.-J. Kleebe, C. Trautmann, W. Ensinger, Electrochim. Acta 202, 47 (2016)

    Article  Google Scholar 

  7. F. Muench, R. Popovitz-Biro, T. Bendikov, Y. Feldman, B. Hecker, M. Oezaslan, I. Rubinstein, A. Vaskevich, Adv. Mater. 30(51), e1805179 (2018)

    Article  Google Scholar 

  8. L.L. Hench, J.K. West, Chem. Rev. 90(1), 33 (1990)

    Article  Google Scholar 

  9. C.J. Brinker, A.J. Hurd, P.R. Schunk, G.C. Frye, C.S. Ashley, J. Non-crystalline Solids. 147–148, 424 (1992)

    Article  ADS  Google Scholar 

  10. H.M. Villullas, F.I. Mattos-Costa, P.A.P. Nascente, L.O.S. Bulhões, Electrochim. Acta 49(22–23), 3909 (2004)

    Article  Google Scholar 

  11. W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, G. Lelong, L. Lachal, K.A. Richardson, J. Appl. Phys. 93(12), 9553 (2003)

    Article  ADS  Google Scholar 

  12. C.R. Stefan, M. Elisa, I.C. Vasiliu, B.A. Sava, L. Boroica, M. Sofronie, F. Tolea, M. Enculescu, V. Kuncser, A. Beldiceanu, A. Volceanov, M. Eftimie, Appl. Surf. Sci. 448, 474 (2018)

    Article  ADS  Google Scholar 

  13. A. Hussain, J. Calabria-Holley, D. Schorr, Y. Jiang, M. Lawrence, P. Blanchet, Appl. Surf. Sci. 434, 850 (2018)

    Article  ADS  Google Scholar 

  14. Y.K. Shen, X.Q. He, X. Gu, Z. Liu, Z.H. He, R Soc Open Sci. 5(9), 180722 (2018)

    Article  ADS  Google Scholar 

  15. S.-Y. Pan, E.G. Eleazar, E.E. Chang, Y.-P. Lin, H. Kim, P.-C. Chiang, Appl. Energy 148, 23 (2015)

    Article  Google Scholar 

  16. B. Zhao, Y. Su, W. Tao, Appl. Energy 136, 132 (2014)

    Article  Google Scholar 

  17. M.-J. Su, Y. Luo, G.-W. Chu, W. Liu, X.-H. Zheng, J.-F. Chen, Ind. Eng. Chem. Res. 57(13), 4743 (2018)

    Article  Google Scholar 

  18. C.-C. Lin, B.-C. Chen, J. Ind. Eng. Chem. 14(3), 322 (2008)

    Article  Google Scholar 

  19. X. Liu, C. Luo, C. Jiang, L. Shao, Y. Zhang, F. Shi, RSC Adv. 4(103), 59528 (2014)

    Article  Google Scholar 

  20. L. Zhao, Z. Guo, Z. Wang, M. Wang, Metall. Mater. Trans. A. 41(3), 670 (2010)

    Article  Google Scholar 

  21. J. Leng, J. Chen, D. Wang, J.-X. Wang, Y. Pu, J.-F. Chen, Ind. Eng. Chem. Res. 56(28), 7977 (2017)

    Article  Google Scholar 

  22. X.-W. Han, X.-F. Zeng, J. Zhang, H. Huan, J.-X. Wang, N.R. Foster, J.-F. Chen, Chem. Eng. J. 296, 182 (2016)

    Article  Google Scholar 

  23. C. Ramshaw, Heat Recovery Syst. CHP 13(13), 493 (1993)

    Article  Google Scholar 

  24. M. Cheng, C. Jiang, C. Luo, Y. Zhang, F. Shi, ACS Appl. Mater. Interfaces. 7(33), 18824 (2015)

    Article  Google Scholar 

  25. C. Jiang, X. Liu, C. Luo, Y. Zhang, L. Shao, F. Shi, J. Mater. Chem. A. 2, 34 (2014)

    Google Scholar 

  26. T. Liu, Z. Guo, Z. Wang, M. Wang, Surf. Coat. Technol. 204(20), 3135 (2010)

    Article  Google Scholar 

  27. J.H. Chang, C.R. de Leon, I.W. Hunter, Langmuir 28(10), 4805 (2012)

    Article  Google Scholar 

  28. Z. Bu, W. Li, J. Li, X. Zhang, J. Mao, Y. Chen, Y. Pei, Mater. Today Phys. (2019). https://doi.org/10.1016/j.mtphys.2019.100096

    Article  Google Scholar 

  29. X. Nie, H. Wang, J. Zou, Appl. Surf. Sci. 261, 554 (2012)

    Article  ADS  Google Scholar 

  30. Y. Niimura, N. Oonishi, K. Okubo, L.L.T. Ngoc, E.T. Carlen, Nanoscale. 10(30), 14390 (2018)

    Article  Google Scholar 

  31. H.-J. Kim, D.-E. Kim, Surf. Coat. Technol. 215, 234 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the project under Grant No. 09010–32031708 for State Key Laboratory of Optoelectronic Materials and Technologies. It was also supported by the project under Grant No. 71000–42080001 for Zhuhai Key Laboratory of Center for Space Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhui He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Zhu, Z. & He, Z. Investigating the formation of the single-layer nano-granular film assisted by hypergravity. Appl. Phys. A 126, 371 (2020). https://doi.org/10.1007/s00339-020-03540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03540-3

Keywords

Navigation