Skip to main content

Advertisement

Log in

Dynamic testing of nanosecond laser pulse induced plasma shock wave propulsion for microsphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present work introduces a laser pulse micro-propulsion system for microsphere propulsion and uses the micro-propulsion system to investigate the propulsion mechanism, propulsion mode, and potential application. The plasma (or shock wave) generation at the tip of micro-propulsion system due to the laser energy emitted from the system tip exceeds the ionization threshold of air. Meanwhile, the propagation characteristics of shock wave such as propagation distance, velocity and pressure have been calculated, and then succeeded in realizing propulsion of microsphere via shock wave recoil effect. The result demonstrated that the propulsion is dominated by the shock wave ejection mechanism. In addition, the laser energy and microsphere diameters are varied to study the influence on microsphere movement efficiency. The experimental results show that the microsphere movement efficiency depends on the laser energy and microsphere size. Analysis of the experimental and the simulation results suggest that the micro-propulsion system may have significant influence on directional propulsion of particles from the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.V. Lakatosh, D.B. Abramenko, V.V. Ivanov, V.V. Medvedev, V.M. Krivtsun, K.N. Koshelev, A.M. Yakunin, Laser. Phys. Lett. 15, 016003 (2018)

    ADS  Google Scholar 

  2. A. Kantrowitz, Aeronaut. Aeronaut. 10, 74 (1972)

    Google Scholar 

  3. A.V. Pakhomov, D.A. Gregory, AIAA J. 38, 725 (2000)

    ADS  Google Scholar 

  4. A.L. Klein, W. Bouwhuis, C.W. Visser, H. Lhuissier, C. Sun, J.H. Snoeijer, E. Villermaux, D. Lohse, H. Gelderblom, Phys. Rev. Appl. 3, 044018 (2015)

    ADS  Google Scholar 

  5. Z.Y. Zheng, J. Zhang, X. Lu, Z.Q. Hao, M.H. Xu, Z.H. Wang, Z.Y. Wei, Chin. Phys. Lett. 22, 1725 (2005)

    ADS  Google Scholar 

  6. H.C. Yu, H.Y. Li, Y. Wang, L.G. Cui, S.Q. Liu, J. Yang, Opt. Laser Technol. 100, 57 (2018)

    ADS  Google Scholar 

  7. V.P. Ageev, A.I. Barchukov, F.V. Bunkin, V.I. Konov, V.P. Korobeinikov, B.V. Putjatin, V.M. Hudjakov, Acta Astronaut. 7, 79 (1980)

    ADS  Google Scholar 

  8. Z.Y. Zheng, J. Zhang, Z.Q. Hao, Z. Zhang, M. Chen, X. Lu, Z.H. Wang, Z.Y. Wei, Opt. Express 13, 10616 (2005)

    ADS  Google Scholar 

  9. N. Zhang, X.N. Zhu, J.J. Yang, X.L. Wang, M.W. Wang, Phys. Rev. Lett. 99, 167602 (2007)

    ADS  Google Scholar 

  10. M. Banaee, S.H. Tavassoli, Polym. Test. 31, 759 (2012)

    Google Scholar 

  11. C.R. Phipps, J.R. Luke, T. Lippert, M. Hauer, A. Wokaun, Appl. Phys. A. 79, 1835 (2004)

    Google Scholar 

  12. N. Zhang, W.W. Liu, Z.J. Xu, M.W. Wang, X.N. Zhu, J. Appl. Phys. 104, 033104 (2008)

    ADS  Google Scholar 

  13. Q.S. Wang, L. Jiang, J.Y. Sun, C.J. Pan, W.N. Han, G.Y. Wang, H. Zhang, C.P. Grigoropoulos, Y.F. Lu, Photonics Res. 5, 488 (2017)

    Google Scholar 

  14. H. Zhang, F.T. Zhang, X. Du, G.P. Dong, J.R. Qiu, Opt. Express 23, 1370 (2015)

    ADS  Google Scholar 

  15. S.G. Demos, R.A. Negres, R.N. Raman, N. Shen, A.M. Rubenchik, M.J. Matthews, Opt. Express 24, 7792 (2016)

    ADS  Google Scholar 

  16. H.C. Yu, L.G. Cui, K. Zhang, J. Yang, H.Y. Li, Appl. Phys. A. 124, 37 (2018)

    ADS  Google Scholar 

  17. H.Y. Li, Y.D. Zhang, J. Li, L. Qiang, Opt. Lett. 36, 1996 (2011)

    ADS  Google Scholar 

  18. H.C. Yu, H.Y. Li, L.G. Cui, S.Q. Liu, J. Yang, Sci. Rep. 7, 16299 (2017)

    ADS  Google Scholar 

  19. N. Zhang, Y.B. Zhao, X.N. Zhu, Opt. Express 12, 3590 (2004)

    ADS  Google Scholar 

  20. D. Kurilovich, A.L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, O.O. Versolato, Phys. Rev. Appl. 6, 014018 (2016)

    ADS  Google Scholar 

  21. J.M. Lee, K.G. Watkins, J. Appl. Phys. 89, 6496 (2001)

    ADS  Google Scholar 

  22. R.W. Fenn III, S. Middleman, AlChE J. 15, 379 (1969)

    Google Scholar 

  23. A.V. Hill, P. Roy, Soc. B-Biol. Sci. 102, 381 (1927)

    Google Scholar 

  24. L.Y. Yue, Z.B. Wang, W. Guo, L. Li, J. Phys. D-Appl. Phys. 45, 365106 (2012)

    Google Scholar 

  25. D. Kurilovich, M.M. Basko, D.A. Kim, F. Torretti, R. Schupp, J.C. Visschers, J. Scheers, R. Hoekstra, W. Ubachs, O.O. Versolato, Phys. Plasmas 25, 012709 (2018)

    ADS  Google Scholar 

  26. W. Zapka, W. Ziemlich, A.C. Tam, Appl. Phys. Lett. 58, 2217 (1991)

    ADS  Google Scholar 

  27. M. Boueri, M. Baudelet, J. Yu, X.L. Mao, S.S. Mao, R. Russo, Appl. Surf. Sci. 255, 9566 (2009)

    ADS  Google Scholar 

  28. X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Appl. Phys. A. 80, 237 (2005)

    ADS  Google Scholar 

  29. M.R. Ahmad, Y. Jamil, M.Q. Zakaria, T. Hussain, R. Ahmad, Laser Phys. Lett. 12, 076101 (2015)

    ADS  Google Scholar 

  30. H. Qiang, J. Chen, B. Han, Z.H. Shen, J. Lu, X.W. Ni, Opt. Express 22, 17532 (2014)

    ADS  Google Scholar 

  31. R.R. Fang, A. Vorobyev, C.L. Guo, Light-Sci. Appl. 6, e16256 (2017)

    ADS  Google Scholar 

  32. Z.Q. Chen, X.B. Wang, D.L. Zuo, P.X. Lu, J.W. Wang, Laser Phys. Lett. 13, 056002 (2016)

    ADS  Google Scholar 

  33. J.G. Lunney, R. Jordan, Appl. Surf. Sci. 127–129, 941 (1998)

    ADS  Google Scholar 

  34. B. Wu, Y.C. Shin, H. Pakhal, N.M. Laurendeau, R.P. Lucht, Phys. Rev. E 76, 026405 (2007)

    ADS  Google Scholar 

  35. C.R. Phipps, T.P. Turner, R.F. Harrison, G.W. York, W.Z. Osborne, G.K. Anderson, X.F. Corlis, L.C. Haynes, H.S. Steele, K.C. Spicochi, J. Appl. Phys. 64, 1083 (1988)

    ADS  Google Scholar 

  36. S.J. Davies, C. Edwards, G.S. Taylor, S.B. Palmer, J. Phys. D-Appl. Phys. 26, 329 (1993)

    ADS  Google Scholar 

  37. T. Pozar, A. Babnik, J. Mozina, Opt. Express 23, 7978 (2015)

    ADS  Google Scholar 

  38. J.P. Reilly, A. Bailanryne, J.A. Woodroffe, AIAA J. 17, 1098 (1979)

    ADS  Google Scholar 

  39. T.F. Zhang, H.C. Chang, Y.P. Wu, P.S. Xiao, N.B. Yi, Y.D. Lu, Y.F. Ma, Y. Huang, K. Zhao, X.Q. Yan, Z.B. Liu, J.G. Tian, Y.S. Chen, Nat. Photonics 9, 471 (2015)

    ADS  Google Scholar 

  40. Z.H. Zhu, W. Gao, C.Y. Mu, H.W. Li, Optica 3, 212 (2016)

    ADS  Google Scholar 

  41. Y. Lu, W.D. Song, Y. Zhang, T.S. Low, Proc. SPIE 3550, 7 (1998)

    ADS  Google Scholar 

  42. Q.Q. Gu, G.Y. Feng, G.R. Zhou, J.H. Han, J. Luo, J.L. Men, Y. Jiang, Appl. Surf. Sci. 457, 604 (2018)

    ADS  Google Scholar 

  43. T. Hooper, C. Cetinkaya, J. Adhesion Sci. Technol. 17, 763 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NSFC) (No. 61605031) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanyang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 36152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Li, H., Wu, X. et al. Dynamic testing of nanosecond laser pulse induced plasma shock wave propulsion for microsphere. Appl. Phys. A 126, 63 (2020). https://doi.org/10.1007/s00339-019-3243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3243-z

Keywords

Navigation