Skip to main content
Log in

Experimental investigations of underwater laser propulsion microspheres based on a tapered fiber propulsion system

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An underwater propulsion microsystem is proposed in this work, which employs a nanosecond laser pulse out from the tapered fiber tip. Noteworthily, the system can generate a directional shock wave (or plasma) to propel the polystyrene (PS) microsphere. Through simulation, the shock wave propagation characteristics and the bubble dynamic are investigated. Experimentally, high-speed photography method is employed to obtain the motion image of microsphere. The results show that the propulsion efficiency is dependent on the laser energy. Meanwhile, we explain the role of the bubble dynamic process in propelling microsphere, and find that the bubble diameter increases with the laser energy. In addition, an experiment is performed to separate and remove the PS microsphere clusters in water at fixed point. Compared with conventional technology, this new method has advantages of high controllability, directional and non-contact, and can be used for directional manipulation of underwater microstructures and removal of contaminated microspheres in water environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Eliezer, A. Ravid, Z. Henis, J.M. Martinez, Laser Part. Beams 34(4), 772 (2016)

    Article  ADS  Google Scholar 

  2. Z.Y. Zheng, J. Zhang, X. Lu, Z.Q. Hao, X.H. Yuan, Z.H. Wang, Z.Y. Wei, Appl. Phys. A. 83(2), 329–332 (2006)

    Article  ADS  Google Scholar 

  3. K. Shimamura, K. Matsui, J.A. Ofosu, I. Yokota, K. Komurasaki, Appl. Phys. Lett. 110(13), 134104 (2017)

    Article  ADS  Google Scholar 

  4. A.V. Pakhomov, D.A. Gregory, AIAA J. 38, 725–727 (2000)

    Article  ADS  Google Scholar 

  5. L.N. Myrabo, M.A. Libeau, E.D. Meloney, R.L. Brachen, T.B. Knowles, High-Power Laser Ablation 5448, 450–464 (2004)

    Article  Google Scholar 

  6. J.G. Fujimoto, W.Z. Lin, E.P. Ippen, C.A. Puliafito, R.F. Steinert, Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985)

    Google Scholar 

  7. F. Docchio, Regondi, M.R.C. Capon, J. Mellerio, Appl. Opt. 27(17), 3661–3674 (1988)

    Article  ADS  Google Scholar 

  8. D. Kröninger, K. Köhler, T. Kurz, W. Lauterborn, Exp. Fluids 48(3), 395–408 (2010)

    Article  Google Scholar 

  9. J. Chen, B.B. Li, H.C. Zhang, B. Han, Z.H. Shen, X.W. Ni, Proc. SPIE. 8603, 86030W (2013)

    Article  Google Scholar 

  10. J. Chen, B.B. Li, H.C. Zhang, H. Qiang, Z.H. Shen, X.W. Ni, J. Appl. Phys. 113(6), 063107 (2013)

    Article  ADS  Google Scholar 

  11. B. Han, J. Chen, Z.H. Shen, J. Lu, X.W. Ni, Opt. Laser Technol. 43(3), 604–608 (2011)

    Article  ADS  Google Scholar 

  12. H. Hidai, H. Tokura, Appl. Surf. Sci. 253(3), 1431–1434 (2006)

    Article  ADS  Google Scholar 

  13. Z. Nie, Y. Ye, Y. Ren, X. Ren, Y. Fu, Opt. Laser Technol. 134, 106629 (2021)

    Article  Google Scholar 

  14. G. Je, D. Malka, H. Kim, S. Hong, B. Shin, Appl. Surf. Sci. 417, 244–249 (2017)

    Article  ADS  Google Scholar 

  15. M.J. Villangcal, D. Palima, A.R. Bañas, J. Glückstad, Light Sci. Appl. 5, e16148 (2016)

    Article  ADS  Google Scholar 

  16. M. Sofer, J.D. Watterson, T.A. Wollin, N. Linda, R. Hassan, D.D. John, J. Urol. 167(1), 31–34 (2002)

    Article  Google Scholar 

  17. Z.Y. Zheng, J. Zhang, Z.Q. Hao, Z. Zhang, M. Chen, X. Lu, Z.H. Wang, Z.Y. Wei, Opt. Express. 13(26), 10616–10621 (2005)

    Article  ADS  Google Scholar 

  18. N. Zhang, W.W. Liu, Z.J. Xu, M.W. Wang, X.N. Zhu, J. Appl. Phys. 104(3), 033104 (2008)

    Article  ADS  Google Scholar 

  19. A.L. Klein, W. Bouwhuis, C.W. Visser, H. Lhuissier, C. Sun, J.H. Snoeijer, E. Villermaux, D. Lohse, H. Gelderblom, Phys. Rev. Appl. 3(4), 044018 (2015)

    Article  ADS  Google Scholar 

  20. H.C. Yu, X. Wu, Y.G. Yuan, H.Y. Li, J. Yang, Opt. Express. 27(7), 9763–9772 (2019)

    Article  ADS  Google Scholar 

  21. H.C. Yu, H.Y. Li, L.G. Cui, S.Q. Liu, J. Yang, Sci. Rep. 7, 16299 (2017)

    Article  ADS  Google Scholar 

  22. A. Vogel, W. Lauterborn, R. Timm, J. Fluid Mech. 206, 299–338 (1989)

    Article  ADS  Google Scholar 

  23. C. Schaffer, N. Nishimura, E. Glezer, A. Kim, E. Mazur, Opt. Express 10(3), 196 (2002)

    Article  ADS  Google Scholar 

  24. A. Philipp, W. Lauterborn, J. Fluid Mech. 361, 75–116 (2000)

    Article  ADS  Google Scholar 

  25. C.D. Harris, N. Shen, A.M. Rubenchik, S.G. Demos, M.J. Matthews, Opt. Lett. 40(22), 5212–5215 (2015)

    Article  ADS  Google Scholar 

  26. A. Vatry, M.N. Habib, P. Delaporte, M. Sentis, D. Grojo, C. Grisolia, S. Rosanvallon, Appl. Surf. Sci. 255(10), 5569–5573 (2009)

    Article  ADS  Google Scholar 

  27. Z.Q. Chen, X.B. Wang, D.L. Zuo, P.X. Lu, J.W. Wang, Laser Phys. Lett. 13(5), 056002 (2016)

    Article  ADS  Google Scholar 

  28. J. Chen, H.C. Zhang, Z.H. Shen, J. Lu, X.W. Ni, Opt. Lett. 38(19), 3803–3806 (2013)

    Article  ADS  Google Scholar 

  29. L. Rayleigh, Philos. Mag. 34, 94–98 (1917)

    Article  Google Scholar 

  30. J.B. Keller, M. Miksis, J. Acoust. Soc. Am. 68, 628–633 (1980)

    Article  ADS  Google Scholar 

  31. L. Lv, Y.X. Zhang, Y.N. Zhang, Y.N. Zhang, Ultrason. Sonochem. 56, 63–76 (2019)

    Article  Google Scholar 

  32. M. Banaee, S.H. Tavassoli, Polym. Test. 31(6), 759–764 (2012)

    Article  Google Scholar 

  33. D. Kurilovich, A.L. Klein, F. Torretti, A. Lassise, R. Hoekstra, W. Ubachs, H. Gelderblom, O.O. Versolato, Phys. Rev. Appl. 6(1), 014018 (2016)

    Article  ADS  Google Scholar 

  34. T. Liang, Z.Y. Zheng, S.Q. Zhang, W.C. Tang, K. Xiao, W.F. Liang, L. Gao, H. Gao, Plasma Sci. Technol. 18(10), 1034–1037 (2016)

    Article  ADS  Google Scholar 

  35. Z.B. Ren, Z.G. Zuo, S.J. Wu, S.H. Liu, Phys. Rev. Lett. 128(4), 044501 (2022)

    Article  ADS  Google Scholar 

  36. X. Chen, R.Q. Xu, Z.H. Shen, J. Lu, X.W. Ni, Opt. Laser. Technol. 36(3), 197–203 (2004)

    Article  ADS  Google Scholar 

  37. D.M. Zhang, D. Liu, Z.H. Li, S.P. Hou, B.M. Yu, G. Li, X.Y. Tan, L. Li, Physica B. 362(1–4), 82–87 (2005)

    Article  ADS  Google Scholar 

  38. W. Kim, T.H. Kim, J. Choi, H.Y. Kim, Appl. Phys. Lett. 94(8), 213 (2009)

    Google Scholar 

  39. C.L. Chu, T.Y. Lu, Y.K. Fuh, Semicond Sci. Technol. 35(4), 045001 (2020)

    Article  ADS  Google Scholar 

  40. C.D. Ohl, M. Arora, R. Dijkink, V. Janve, D. Lohse, Appl. Phys. Lett. 89(7), 74102 (2006)

    Article  Google Scholar 

  41. F. Reuter, R. Mettin, Ultrason. Sonochem. 29, 550–562 (2016)

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (52271344); National Key R and D plan of the Ministry of science and technology (2018YFC0310102); Joint fund for weapons and equipment (6141B020702); Natural Science Foundation of Heilongjiang Province of China (LH2021E032).

Author information

Authors and Affiliations

Authors

Contributions

Yichen He wrote the main manuscript text , Yichen He prepared figures 1-8. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yang Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., He, Y., Zhou, G. et al. Experimental investigations of underwater laser propulsion microspheres based on a tapered fiber propulsion system. Appl. Phys. B 128, 195 (2022). https://doi.org/10.1007/s00340-022-07915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-022-07915-7

Navigation