Skip to main content
Log in

Fabrication and characterization of metal-ferroelectric-semiconductor non-volatile memory using BaTiO3 film prepared through sol–gel process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, a metal-ferroelectric-semiconductor (MFS) structure for non-volatile memory application using barium titanate (BaTiO3) thin film is proposed. Sol–gel method is used to prepare the material, while deposition is done through spin-coating. A thin layer of BaTiO3 (BTO) film on a silicon substrate with MFS structure is fabricated followed by N2 dominant gas annealing. The electrical properties and the non-volatile memory operations characteristics of prepared MFS structure with BTO as the ferroelectric thin film are observed and discussed. Two different solvents are used to prepare the sol–gel of BTO material and prepared films are compared on the basis of morphological and electrical properties. It is found that the film prepared by 2-methoxyethol is better than the film prepared by ethanol. The device’s performance is evaluated by changing the annealing temperature and variable sweep voltages. Memory window and leakage current improve at higher annealing temperature with saturation at 650 °C. A maximum of 6 V memory window is achieved for 650 °C annealed device. Saturation in memory window is also observed with respect to the voltage sweep up to − 6 V to + 6 V with a considerable remnant polarization value. Endurance property for the MFS structure shows promising result for the iteration cycle of 1013 using positive up negative down pulse testing. To the best of author’s knowledge, this is the first report on BTO based MFS structure for memory application prepared through sol–gel process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Chen, Solid State Electron. 125, 25–38 (2016)

    ADS  Google Scholar 

  2. J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Nanoscale Res. Lett. 9, 1–33 (2014)

    ADS  Google Scholar 

  3. S. Kang, S. Park, H. Jung, H. Shim, J. Cha, IEEE Trans. Comput. 58, 744–758 (2009)

    MathSciNet  Google Scholar 

  4. K. Yagami, A.A. Tulapurkar, A. Fukushima, Y. Suzuki, J. Appl. Phys. 97, 2003–2006 (2005)

    Google Scholar 

  5. A. Carlos, P. De Araujo, L.D. Mcmillan, B.M. Melnick, J.D. Cuchiaro, J.F. Scott, Ferroelectrics 104, 241–256 (1990)

    Google Scholar 

  6. Y. Fujisaki, I. Kunie, H. Ishiwara, Symp. Proc. Mater. Res. Soc. 1609, 1–16 (2001)

    Google Scholar 

  7. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22–27 (1998)

    Google Scholar 

  8. M.H. Tang, Z.H. Sun, Y.C. Zhou, Y. Sugiyama, H. Ishiwara, Appl. Phys. Lett. 94, 212907 (2009)

    ADS  Google Scholar 

  9. M. Tang, X. Xu, Z. Ye, Y. Sugiyama, H. Ishiwara, I.E.E.E. Trans, IEEE Trans. Electron. Dev. 58, 370–375 (2011)

    ADS  Google Scholar 

  10. H. Levine, J. Biol. Phys. 29, 1–6 (2013)

    ADS  Google Scholar 

  11. Y. Tarui, T. Hirai, K. Teramoto, H. Koike, K. Nagashima, Appl. Surf. Sci. 113–114, 656–663 (1997)

    ADS  Google Scholar 

  12. T. Fukami et al., in Proceedings of the 9th Conference on Solid State Devices, Tokyo (1978)

  13. S.M. Yoon, H. Ishiwara, IEEE Trans. Electron. Dev. 48, 2002–2008 (2001)

    ADS  Google Scholar 

  14. A. Chin, M.Y. Yang, C.L. Sun, S.Y. Chen, IEEE Electron. Dev. Lett. 22, 336–338 (2001)

    ADS  Google Scholar 

  15. N. Setter et al., J. Appl. Phys. 100, 5 (2006)

    Google Scholar 

  16. R. Moazzami et al., IEEE Trans. Electron. Dev. 39, 2044–2049 (1992)

    ADS  Google Scholar 

  17. M. Noda, H. Sugiyama, M. Okuyama, Jp. J. Appl. Phys. Pt. 1 Regul. Pap. Short Notes Rev. Pap. 38(9B) (1999)

  18. B.C. Lan, S.Y. Chen, H.-Y. Lee, Mater. Chem. Phys. 80, 325–328 (2003)

    Google Scholar 

  19. P. Glynne-Jones, S.P. Beeby, P. Dargie, T. Papakostas, N.M. White, Meas. Sci. Technol. 11, 526–531 (2000)

    ADS  Google Scholar 

  20. S.K. Dey, R. Zuleeg, Ferroelectrics 108, 37–46 (1990)

    Google Scholar 

  21. S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Comput. Mater. Sci. 29, 165–178 (2004)

    Google Scholar 

  22. Y. Cao, J. Shen, C. Randall, L.Q. Chen, Acta Mater. 112, 224–230 (2016)

    Google Scholar 

  23. G.J. Reynolds, M. Kratzer, M. Dubs, H. Felzer, R. Mamazza, Materials (Basel) 5, 575–589 (2012)

    ADS  Google Scholar 

  24. S. Abel, T. Stoferle, C. Marchiori, D. Caimi, L. Czornomaz, M. Stuckelberger, M. Sousa, B.J. Offrein, J. Fompeyrine, J. Lightw. Technol. 34, 8 (2016)

    Google Scholar 

  25. S. Abel, T. Stoferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B.J. Offrein, J. Fompeyrine, Nat. Commun. (2013). https://doi.org/10.1038/ncomms2695

    Article  Google Scholar 

  26. M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y. Li, L.F. Kourkoutis, J.A. Klug, L.-Q. Chen, J. Levy, D.G. Schlom, Science 324, 367–370 (2009)

    ADS  Google Scholar 

  27. C. Metzmacher, K. Albertsen, J. Am. Ceram. Soc. 84, 821–826 (2001)

    Google Scholar 

  28. S. Pradhan, G.S. Roy, Researcher 55, 63–67 (2013)

    Google Scholar 

  29. A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3–26 (2000)

    Google Scholar 

  30. VK Dwivedi, in Proceeding of the 6th National Conference of nanomaterials and Nanotechnology (2017)

  31. Y.-C. Chang, R. Xue, Y.-H. Wang, IEEE Trans. Electron. Dev. 61, 4090–4097 (2014)

    ADS  Google Scholar 

  32. M.M. Bulbul, S. Zeyrek, Microelectron. Eng. 83, 2522–2526 (2006)

    Google Scholar 

  33. J.S. Choi, G.W. Neudeck, IEEE Trans. Electron. Dev. 39, 2515 (1992)

    ADS  Google Scholar 

  34. K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Top. Appl. Phys. 105, 1–30 (2007)

    Google Scholar 

  35. S. Iakovlev, C.-H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys. 97, 094901 (2005)

    ADS  Google Scholar 

  36. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Opt. Mater. (Amst). 34, 893–900 (2012)

    ADS  Google Scholar 

  37. M.H. Suhail, G.M. Rao, S. Mohan, J. Appl. Phys. 71, 1421–1427 (1992)

    ADS  Google Scholar 

  38. G. He, Z. Sun, High-k gate dielectrics for CMOS technology (Wiley-VCH, Weinheim, 2012). ISBN 978-0-470-01023-5

    Google Scholar 

  39. Minghu Tang, Xu Xiaolei, Zhi Ye, Yoshihiro Sugiyama, Hiroshi Ishiwara, IEEE Trans. Electron. Dev. 58, 58 (2011)

    Google Scholar 

  40. A. Grigoriev, M.M. Azad, J. McCampbell, Rev. Sci. Instrum. 82, 124704 (2011)

    ADS  Google Scholar 

  41. H. Naganuma, Y. Inoue, S. Okamura, Jpn. J. Appl. Phys. 47, 5558–5560 (2008)

    ADS  Google Scholar 

  42. K.P. Pandey, Appl. Phys. A 124, 507 (2018)

    ADS  Google Scholar 

  43. X. Liu, Y. Liu, W. Chen, J. Li, L. Liao, Nanoscale Res. Lett. 7, 285 (2012)

    ADS  Google Scholar 

  44. A.G. Chernikova, M.G. Kozodaev, D.V. Negrov, E.V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, A.M. Markeev, ACS Appl. Mater. Interfaces. 10, 2701 (2018)

    Google Scholar 

  45. W.C. Yap, H. Jiang, J. Liu, Q. Xia, W. Zhu, Appl. Phys. Lett. 111, 013103 (2017)

    ADS  Google Scholar 

  46. D.H. Minh, N.V. Loi, N.H. Duc, B.N.Q. Trinh, J Sci Adv Mater Dev 1, 75–79 (2016)

    Google Scholar 

  47. M.S. Bozgeyik, J.S. Cross, H. Ishiwara, K. Shinozaki, J. Electroceram. 28, 158–164 (2012)

    Google Scholar 

  48. B. Jiang, M. Tang, J. Li, Y. Xiao, Z. Tang, H. Cai, X. Lv, Y. Zhou, J. Phys. D Appl. Phys. 45, 025102 (2012)

    ADS  Google Scholar 

  49. W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, Y. Zhou, Nanoscale Res. Lett. 14, 254 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The XRD characterization of the film was done at Spintronic Lab, Applied Science Department, IIIT-Allahabad. The SEM analysis of the BTO film was done at ACMS, IIT-Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, A., Srivastava, V., Sunny et al. Fabrication and characterization of metal-ferroelectric-semiconductor non-volatile memory using BaTiO3 film prepared through sol–gel process. Appl. Phys. A 126, 36 (2020). https://doi.org/10.1007/s00339-019-3192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3192-6

Navigation