Skip to main content
Log in

Efficient synthesis of carbon microtubes–gold nanoparticles composite: optical and micro-analytical study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article reports a new synthesis method for the production of carbon microtubes–AuNPs composite (CMT–AuNPs) based on sucrose. The CMT showed the ability to functionalize gold nanoparticles. The UV–Vis spectroscopy was used to determine the surface plasmon resonance (SPR) of the nanoparticles and the absorbance of the CMT. The results showed two absorption bands centered at 287 nm and 527 nm, associated to carbon and gold structures, respectively. The Raman spectra revealed two bands, D and G, located at 1345 cm−1 and 1570 cm−1. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to obtain structural properties of the CMT, the results show an approximate diameter size of 0.8–1.5 µm. Metallic gold NPs were observed between 15 and 30 nm adhered to the CMT surface. The NPs were analyzed with high-resolution imaging HRTEM and chemical analysis through energy dispersive X-ray spectroscopy EDS. This is the first report that uses sucrose as a precursor to obtain carbon microtubes with gold nanoparticles and opens up new ways to fabricate this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109(29), 13857–13870 (2005)

    Article  Google Scholar 

  2. M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 45, 389501 (2012)

    Article  ADS  Google Scholar 

  3. I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5(5), 829–834 (2005)

    Article  ADS  Google Scholar 

  4. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248 (2006)

    Article  Google Scholar 

  5. D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controlled Release 149(1), 65–71 (2011)

    Article  Google Scholar 

  6. M. Haruta, Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull. 37(1–2), 27–36 (2004)

    Article  Google Scholar 

  7. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    Article  Google Scholar 

  8. R. Muszynski, B. Seger, P.V. Kamat, Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 112(14), 5263–5266 (2008)

    Article  Google Scholar 

  9. W.H. Lai, Y.H. Su, L.G. Teoh, M.H. Hon, Commercial and natural dyes as photosensitizers for a water-based dye-sensitized solar cell loaded with gold nanoparticles. J. Photochem. Photobiol. A Chem. 195(2–3), 307–313 (2008)

    Article  Google Scholar 

  10. J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Yi Zhang, Z. Zhang, Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010)

    Article  ADS  Google Scholar 

  11. J. Liu, P. Bai, X.S. Zhao, Ruthenium nanoparticles embedded in mesoporous carbon microfibers: preparation, characterization and catalytic properties in the hydrogenation of d-glucose. Phys. Chem. Chem. Phys. 13, 3758–3763 (2011)

    Article  Google Scholar 

  12. A. La Torre, M. del Carmen Giménez-López, M.W. Fay, G.A. Rance, W.A. Solomonsz, T.W. Chamberlain, P.D. Brown, A.N. Khlobystov, Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS NanoNano 6(3), 2000–2007 (2012)

    Article  Google Scholar 

  13. S. Singh, M. Ashfaq, R.K. Singh, H.C. Joshi, A. Srivastava, A. Sharma, N. Verma, Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol. 30(6), 656–665 (2013)

    Article  Google Scholar 

  14. K. Saxena, P. Kumar, V.K. Jain, Synthesis of carbon microfibers by chemical vapor deposition during the catalytic decomposition of turpentine oil. New Carbon Mater. 26(5), 356–360 (2011)

    Article  Google Scholar 

  15. G. Wen, Yu. Hongming, X. Huang, Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method. Carbon 49(12), 4067–4069 (2011)

    Article  Google Scholar 

  16. H. Yu, X. Huang, G. Wen, Bo Zhong, L. Xia, A pressure enhanced CVD method for large scale synthesis of carbon microtubes and their mechanical properties. Mater. Lett. 65(12), 2004–2006 (2011)

    Article  Google Scholar 

  17. J. Wu, N. Wang, Y. Zhao, L. Jiang, Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 1, 7290–7305 (2013)

    Article  Google Scholar 

  18. A. Suea-Ngam, P. Rattanarat, K. Wongravee, O. Chailapakul, M. Srisa-Art, Droplet-based glucosamine sensor using gold nanoparticles and polyaniline-modified electrode. Talanta 158, 134–141 (2016)

    Article  Google Scholar 

  19. K. Chennakesavulu, G. Ramanjaneya Reddy, Synthesis and characterization of carbon microtube/tantalum oxide composites and their photocatalytic activity under visible irradiation. RSC Adv. 5, 56391–56400 (2015)

    Article  Google Scholar 

  20. J.P. Canejo, J.P. Borges, M.H. Godinho, P. Brogueira, P.I.C. Teixeira, E.M. Terentjev, Helical twisting of electrospun liquid crystalline cellulose micro- and nanofibers. Adv. Mater. 20, 4821–4825 (2008)

    Article  Google Scholar 

  21. J.R. Naik, M. Bikshapathi, R.K. Singh, A. Sharma, N. Verma, H.C. Joshi, A. Srivastava, Preparation, surface functionalization, and characterization of carbon micro fibers for adsorption applications. Environ. Eng. Sci. 28(10), 725–733 (2011)

    Article  Google Scholar 

  22. H.-G. Wang, C. Yuan, R. Zhou, Q. Duan, Y. Li, Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chem. Eng. J. 316, 1004–1010 (2017)

    Article  Google Scholar 

  23. H. Katepalli, M. Bikshapathi, C.S. Sharma, N. Verma, A. Sharma, Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem. Eng. J. 171, 1194–1200 (2011)

    Article  Google Scholar 

  24. F. Su, J. Zeng, P. Bai, L. Lv, P.-Z. Guo, H. Sun, H.L. Li, J. Yu, J.Y. Lee, X.S. Zhao, Template synthesis of mesoporous carbon microfibers as a catalyst support for methanol electrooxidation. Ind. Eng. Chem. Res. 46(26), 9097–9102 (2007)

    Article  Google Scholar 

  25. Y. Zhou, J. Jin, L. Chen, Y. Zhu, B. Xu, Open-ended carbon microtubes/carbon nanotubes for high-performance supercapacitors. Mater. Lett. 241, 80–83 (2019)

    Article  Google Scholar 

  26. Y. Zhou, X. Zhou, C. Ge, W. Zhou, Y. Zhu, B. Xu, Branched carbon nanotube/carbon nanofiber composite for supercapacitor electrodes. Mater. Lett. 246, 174–177 (2019)

    Article  Google Scholar 

  27. R. Britto Hurtado, M. Cortez-Valadez, L.P. Ramírez-Rodríguez, E. Larios-Rodriguez, R.A.B. Alvarez, O. Rocha-Rocha, Y. Delgado-Beleño, C.E. Martinez-Nuñez, H. Arizpe-Chávez, A.R. Hernández-Martínez, M. Flores-Acosta, Instant synthesis of gold nanoparticles at room temperature and SERS applications. Phys. Lett. A 380, 2658–2663 (2016)

    Article  ADS  Google Scholar 

  28. R. Britto Hurtado, M. Cortez-Valadez, J.R. Aragon-Guajardo, J.J. Cruz-Rivera, F. Martínez-Suárez, M. Flores-Acosta, One-step synthesis of reduced graphene oxide/gold nanoparticles under ambient conditions. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.12.021

    Article  Google Scholar 

  29. M. Zhang, X. Lu, H.-Y. Wang, X. Liu, Y. Qin, P. Zhang, Z.-X. Guo, Porous gold nanoparticle/graphene oxide composite as efficient catalysts for reduction of 4-nitrophenol. RSC Adv. 6(42), 35945–35951 (2016)

    Article  Google Scholar 

  30. C. Umamaheswari, A. Lakshmanan, N.S. Nagarajan, Green synthesis, characterization and catalytic degradation studies of gold nanoparticles against congo red and methyl orange. J. Photochem. Photobiol. B Biol. 178, 33–39 (2018)

    Article  Google Scholar 

  31. T.-C. Huang, L.-C. Yeh, H.-Y. Huang, Z.-Y. Nian, Y.-C. Yeh, Y.-C. Chou, J.-M. Yeh, M.-H. Tsai, The use of a carbon paste electrode mixed with multiwalled carbon nanotube/electroactive polyimide composites as an electrode for sensing ascorbic acid. Polym. Chem. 5, 630–637 (2014)

    Article  Google Scholar 

  32. F. Pan, P. Wei, M. Zhang, Lu Chao, Micelle modified-carbon nanosphere enhanced chemiluminescence from reactive oxygen species for the detection of hydrogen peroxide. Anal. Methods 7, 5667–5673 (2015)

    Article  Google Scholar 

  33. S. Rastegarzadeh, Sh Abdali, Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid. Talanta 104, 22–23 (2013)

    Article  Google Scholar 

  34. V. Sanchez-Mendieta, A.R. Vilchis-Nestor, Green synthesis of noble metal (Au, Ag, Pt) nanoparticles, assisted by plant-extracts, noble metals (INTECH Open Access Publisher, New York, 2012)

    Book  Google Scholar 

  35. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Raman microprobe studies on carbon materials. Carbon 32(8), 1523–1532 (1994)

    Article  Google Scholar 

  36. R. Patidar, B. Rebary, G.R. Bhadu, Fluorescence characteristics of carbon nanoemitters derived from sucrose by green hydrothermal and microwave methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 169, 25–29 (2016)

    Article  ADS  Google Scholar 

  37. J. Zhang, W. Shen, D. Pan, Z. Zhang, Y. Fang, Wu Minghong, Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose. New J. Chem. 34, 591–593 (2010)

    Article  Google Scholar 

  38. J.B. Joo, P. Kim, W. Kim, J. Kim, N.D. Kim, J. Yi, Simple preparation of hollow carbon sphere via templating method. Curr. Appl. Phys. 8, 814–817 (2008)

    Article  ADS  Google Scholar 

  39. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010)

    Article  ADS  Google Scholar 

  40. L. Tang, X. Li, R. Ji, K.S. Teng, G. Tai, J. Ye, C. Wei, S.P. Lau, Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 22, 5676–5683 (2012)

    Article  Google Scholar 

  41. N.J. Hargreaves, S.J. Cooper, Nanographite synthesized from acidified sucrose microemulsions under ambient conditions. Cryst. Growth Des. 16(6), 3133–3142 (2016)

    Article  Google Scholar 

  42. R. Narasimman, S. Vijayan, K. Prabhakaran, Carbon-carbon composite foams with high specific strength from sucrose and milled carbon fiber. Mater. Lett. 144, 46–49 (2015)

    Article  Google Scholar 

  43. S.E. Iyuke, A.B.M. Danna, Morphological study of carbon nanotubes synthesised by FCCVD. Microporous Mesoporous Mater. 84(1–3), 338–342 (2005)

    Article  Google Scholar 

  44. M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195–4203 (2009)

    Article  Google Scholar 

  45. X. Sun, Y. Li, Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir 21(13), 6019–6024 (2005)

    Article  Google Scholar 

  46. A. Alomair, Y. Alqaheem, S.M. Holmes, The use of a sucrose precursor to prepare a carbon membrane for the separation of hydrogen from methane. RSC Adv. 9, 10437–10444 (2019)

    Article  Google Scholar 

  47. V.Y. Butko, A.V. Fokina, V.N. Nevedomskya, Y.A. Kumzerov, A Template Method for Carbon Nanotube Production from Sugar Water (Cornell University Library, 2013). https://arxiv.org/abs/1309.3316.

  48. L. Ru-Shi, Controlled Nanofabrication, L. Ru-Shi (ed.) (Jenny Stanford Publishing, Singapore, 2012). https://doi.org/10.1201/b13155.

  49. A.-P. Wang, F. Kang, Z.-H. Huang, Z. Guo, Preparation of porous carbons from halloysite-sucrose mixtures. Clays Clay Miner. 54(4), 485–490 (2006)

    Article  ADS  Google Scholar 

  50. P. Kim, J.B. Joo, J. Kim, W. Kim, I.K. Song, J. Yi, Sucrose-derived graphitic porous carbon replicated by mesoporous silica. Korean J. Chem. Eng. 23, 1063–1066 (2006)

    Article  Google Scholar 

  51. G. Sauti, K. Jae-Woo, S.J.Emilie, E. Wise. Sucrose treated carbon nanotube and graphene yarns and sheets. EE.UU. Patente Nº. 9,695,531 (2014).

  52. H. Iloukhani, S. Azizian, N. Samadani, Hydrolysis of sucrose by heterogeneous catalysts. React. Kinet. Catal. Lett. 72(2), 239–244 (2001)

    Article  Google Scholar 

  53. A. Mendes, F.D. Magalhäes, L.M. Madeira, Sucrose inversion: an experiment on heterogeneous catalysis. Int. J. Eng. Educ. 6, 893–901 (2003)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the use of TEM facilities at the TEM Laboratory of Universidad de Sonora. Special thanks to Belem González for the technical support in SEM measurements. We appreciate the support given by Laboratorio Nacional de Geoquímica y Mineralogía. M. Cortez-Valadez appreciates the support provided by Cátedras CONACYT program, support that was essential to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Britto Hurtado or M. Cortez-Valadez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, R.B., Calderón-Ayala, G., Cortez-Valadez, M. et al. Efficient synthesis of carbon microtubes–gold nanoparticles composite: optical and micro-analytical study. Appl. Phys. A 125, 844 (2019). https://doi.org/10.1007/s00339-019-3141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3141-4

Navigation