Skip to main content
Log in

Integration of ferroelectric BIT and dielectric HfO2 on silicon substrate with high data retention and endurance for ferroelectric FET applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For this proposed work, the electrical and ferroelectric properties of metal–ferroelectric–insulator–silicon (MFeIS) and metal–ferroelectric–insulator–metal (MFeIM) capacitors with Bi4Ti3O12 (BIT) ferroelectric film deposited on HfO2/Si substrate were investigated. Physical vapor deposition technique (RF sputtering) was carried out for the deposition of 100 nm ferroelectric and high-k dielectric film of 5, 10 and 15 nm thickness. The structural properties such as crystallographic phase, grain size with composition and refractive index of the deposited films were measured by X-ray diffraction, field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS) and multiple angle ellipsometry. Metal/ferroelectric/silicon (MFeS), metal/ferroelectric/metal (MFeM), metal/insulator/silicon (MIS), MFeIS and MFeIM structures were fabricated to obtain the electrical and ferroelectric properties. Investigation shows that the MFeIS structure with 10 nm buffer layer demonstrates improved memory window of 8.81 V as compared to the 3.3 V in the MFeS structure. MFeIM with 10 nm HfO2 buffer layer shows maximum remnant polarization of 4.05 μC/cm2. MFeI (10 nm) S structure even shows endurance higher than 1013 read/write cycles and data retention for more than 10 years. The reliability of the ferroelectric and ferroelectric/dielectric stack was obtained by measuring the breakdown voltage characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. M. Said, M. F. M. Sabri, and F. Salleh, in Ref. Modul. Mater. Sci. Mater. Eng. (Elsevier, 2016).

  2. H. Ishiwara, J. Nanosci. Nanotechnol. 12, 7619 (2012)

    Article  Google Scholar 

  3. T. Mikolajick, Encycl. Mater. Sci. Technol. 2, 1 (2004)

    Google Scholar 

  4. E.C. Ahn, H.-S.P. Wong, E. Pop, Nat. Rev. Mater. 3, 1 (2018)

    Article  Google Scholar 

  5. J.S. Meena, S.M. Sze, U. Chand, T.Y. Tseng, Nanoscale Res. Lett. 9, 1 (2014)

    Article  ADS  Google Scholar 

  6. H. Pirovano, in Search Next Mem. Insid. Circuitry from Oldest to Emerg. Non-Volatile Memories (Springer International Publishing, Cham, 2017), pp. 27–46.

  7. C.S. Hwang, Adv. Electron. Mater. 1, 1 (2015)

    Google Scholar 

  8. X. Pan, Designing Future Low-Power and Secure Processors with Non-Volatile Memory, The Ohio State University, 2017.

  9. J. Zhao, C. Xu, P. Chi, Y. Xie, I.P.S.J. Trans, Syst. LSI Des. Methodol. 8, 2 (2015)

    Google Scholar 

  10. H. A. Demkov and A.-B. Posadas, in Thin Film. Silicon (World Scientific Publishing Co Pte Ltd, Austin, 2016), pp. 403–454.

  11. S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369 (2004)

    Article  ADS  Google Scholar 

  12. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  13. O. Auciello, J.F. Scott, R. Amesh, Phys. Today 51, 22 (1998)

    Article  Google Scholar 

  14. N.M. Sbrockey, G.S. Tompa, R. Lavelle, K.A. Trumbull, M.A. Fanton, D.W. Snyder, R.G. Polcawich, D.M. Potrepka, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 36, 031509 (2018)

    Article  ADS  Google Scholar 

  15. X.K. Wei, T. Sluka, B. Fraygola, L. Feigl, H. Du, L. Jin, C.L. Jia, N. Setter, A.C.S. Appl, Mater. Interfaces 9, 6539 (2017)

    Article  Google Scholar 

  16. P. Kour, S.K. Pradhan, P. Kumar, S.K. Sinha, M. Kar, Mater. Today Proc. 4, 5727 (2017)

    Article  Google Scholar 

  17. H. H. Huang, Q. Zhang, E. Huang, R. Maran, O. Sakata, Y. Ehara, T. Shiraishi, H. Funakubo, P. Munroe, and N. Valanoor, Adv. Mater. Interfaces 2, (2015).

    Article  Google Scholar 

  18. C. A. P. De Araujo, J. D. Cuchiaro, D. L. Mc Millan, M. C. Scott, and J. F. Scott, Nature 374, 627 (1995).

    Article  ADS  Google Scholar 

  19. D.V. Averyanov, C.G. Karateeva, I.A. Karateev, A.M. Tokmachev, M.V. Kuzmin, P. Laukkanen, A.L. Vasiliev, V.G. Storchak, Mater. Des. 116, 616 (2017)

    Article  Google Scholar 

  20. S. R. Singamaneni, J. T. Prater, and J. Narayan, Appl. Phys. Rev. 3, (2016).

  21. Z. Fan, J. Chen, J. Wang, J. Adv. Dielectr. 06, 1630003 (2016)

    Article  ADS  Google Scholar 

  22. F.T.L. Muniz, M.A.R. Miranda, C. dos Santos, J.M. Sasaki, Acta Crystallogr. Sect. A Found. Adv. 72, 385 (2016)

    Article  Google Scholar 

  23. J. Geissbühler, S. De Wolf, B. Demaurex, J. P. Seif, D. T. L. Alexander, L. Barraud, and C. Ballif, Appl. Phys. Lett. 102, (2013).

    Article  ADS  Google Scholar 

  24. J.T. Dawley, R. Radspinner, B.J.J. Zelinski, D.R. Uhlmann, J. Sol-Gel Sci. Technol. 20, 85 (2001)

    Article  Google Scholar 

  25. M. Vehkanaki, T. Hatanpaa, M. Kemell, M. Ritala, M. Leskela, Chem. Matter. 18, 3883 (2006)

    Article  Google Scholar 

  26. C. Long, W. Ren, L. Liu, Y. Xia, and H. Fan, (n.d.).

  27. M.M. Hasan, A.S.M.A. Haseeb, R. Saidur, H.H. Masjuki, M. Hamdi, Opt. Mater. (Amst). 32, 690 (2010)

    Article  ADS  Google Scholar 

  28. M. -Ur-Rahman, G. Yu, T. Soga, T. Jimbo, H. Ebisu, M. Umeno, J. Appl. Phys. 88, 4634 (2000)

    Article  ADS  Google Scholar 

  29. K. K. Shih and D. B. Dove, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 12, 321 (1994).

  30. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Mater. Res. Express 5, 26301 (2018)

    Article  Google Scholar 

  31. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Superlattices Microstruct. 121, 55 (2018)

    Article  ADS  Google Scholar 

  32. P. Singh, R. K. Jha, R. K. Singh, and B. R. Singh, Phys. Semicond. Devices 517 (2017).

  33. J. Sigman, G.L. Brennecka, P.G. Clem, B.A. Tuttle, J. Am. Ceram. Soc. 91, 1851 (2008)

    Article  Google Scholar 

  34. S.A. Yerişkin, M. Balbaşı, İ. Orak, J. Mater. Sci. Mater. Electron. 28, 7819 (2017)

    Article  Google Scholar 

  35. B. Gabriel, Clin. Sci. 1 (2012).

  36. J.J. Wang, H.B. Huang, T.J.M. Bayer, A. Moballegh, Y. Cao, A. Klein, E.C. Dickey, D.L. Irving, C.A. Randall, L.Q. Chen, Acta Mater. 108, 229 (2016)

    Article  Google Scholar 

  37. L. Zhu and Q. Wang, (2012).

  38. C. Long, Q. Chang, H. Fan, Sci. Rep. 7, 1 (2017)

    Article  ADS  Google Scholar 

  39. S. Ma, X. Cheng, Z. Ma, T. Ali, Z. Xu, R. Chu, Ceram. Int. 44, 20465 (2018)

    Article  Google Scholar 

  40. J. Gao, G. He, J.W. Zhang, B. Deng, Y.M. Liu, J. Alloys Compd. 647, 322 (2015)

    Article  Google Scholar 

  41. M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)

    Article  ADS  Google Scholar 

  42. T. Ali, P. Polakowski, S. Riedel, T. Buttner, T. Kampfe, M. Rudolph, B. Patzold, K. Seidel, D. Lohr, R. Hoffmann, M. Czernohorsky, K. Kuhnel, P. Steinke, J. Calvo, K. Zimmermann, J. Muller, I.E.E.E. Trans, Electron Devices 65, 3769 (2018)

    Article  ADS  Google Scholar 

  43. C. Dubourdieu, J. Bruley, T.M. Arruda, A. Posadas, J. Jordan-Sweet, M.M. Frank, E. Cartier, D.J. Frank, S.V. Kalinin, A.A. Demkov, V. Narayanan, Nat. Nanotechnol. 8, 748 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Prof. P. Nagabhushan, Director, Indian Institute of Information Technology, Allahabad for his constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R.K., Singh, P., Goswami, M. et al. Integration of ferroelectric BIT and dielectric HfO2 on silicon substrate with high data retention and endurance for ferroelectric FET applications. Appl. Phys. A 125, 798 (2019). https://doi.org/10.1007/s00339-019-3091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3091-x

Navigation