Skip to main content
Log in

Impact of HfO2 buffer layer on the electrical characteristics of ferroelectric/high-k gate stack for nonvolatile memory applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the proposed work, the electrical properties of metal–ferroelectric–insulator–silicon (MFeIS) capacitors with Sr0.8Bi2.2Ta2O9 (SBT) ferroelectric film deposited on HfO2/Si substrate have been investigated. The SBT film was deposited by RF sputtering and HfO2 film by plasma-enhanced atomic layer deposition (PEALD). The structural characteristic of the deposited ferroelectric and dielectric films was obtained using X-ray diffraction and multiple angle ellipsometric analysis. XRD results indicate the polycrystalline and perovskite structure of the SBT film and amorphous structure of the HfO2 film annealed at different temperatures. SBT film deposited on the silicon substrate and annealed at 500 °C shows the maximum refractive index of 3.46 with the maximum grain size of 32 nm. Metal/ferroelectric/silicon (MFeS), metal/ferroelectric/metal (MFeM), metal/insulator/silicon (MIS) and metal/ferroelectric/insulator/silicon (MFeIS) structures were fabricated to obtain the electrical and ferroelectric properties. MFeIS structure with 10 nm buffer layer shows the improved memory window of 5 V as compared to the 3.07 V in the MFeS structures. MFeI(10 nm)S structure even shows endurance higher than 1012 read/write cycles and data retention for more than 8 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, S. Tanaka, A new flash E2PROM cell using triple polysilicon technology, 1984. Int. Electron Devices Meet. 30, 464–467 (1984). https://doi.org/10.1109/IEDM.1984.190752

    Article  Google Scholar 

  2. Y.C. Yeo, T.J. King, C. Hu, Direct tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091–2093 (2002). https://doi.org/10.1063/1.1506941

    Article  ADS  Google Scholar 

  3. B. Govoreanu, D.P. Brunco, J. Van Houdt, Scaling down the interpoly dielectric for next generation flash memory: challenges and opportunities. Solid State Electron. (2005). https://doi.org/10.1016/j.sse.2005.10.018

    Article  Google Scholar 

  4. R. IM, Semiconductive translating device, US Pat. (1957), https://patents.google.com/patent/US2791760A/en. Accessed 3 Jun 2018

  5. J.L. Moll, Y. Tarui, A new solid state memory resistor. IEEE Trans. Electron Devices 10, 338 (1963). https://doi.org/10.1109/T-ED.1963.15245

    Article  ADS  Google Scholar 

  6. Y. Arimoto, H. Ishiwara, Current Status of ferroelectric random-access memory. MRS Bull. 29, 823–828 (2004). https://doi.org/10.1557/mrs2004.235

    Article  Google Scholar 

  7. M. Noda, K. Kodama, S. Kitai, M. Takahashi, T. Kanashima, M. Okuyama, Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrOx insulator layer. J. Appl. Phys. 93, 4137–4143 (2003). https://doi.org/10.1063/1.1558206

    Article  ADS  Google Scholar 

  8. X. Lu, High-k dielectrics in ferroelectric gate field effect transistors for nonvolatile memory applications, in High-k Gate Dielectrics for CMOS Technology, ed. by G. He, Z. Sun (Wiley, Weinheim, 2012), pp. 471–499. https://doi.org/10.1002/9783527646340.ch15

    Chapter  Google Scholar 

  9. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, On the structural and electrical properties of metal–ferroelectric–high k dielectric–silicon structure for non-volatile memory applications. Bull. Mater. Sci. 41, 1–7 (2018). https://doi.org/10.1007/s12034-018-1624-0

    Article  Google Scholar 

  10. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Electrical and ferroelectric properties of RF sputtered PZT/SBN on silicon for non-volatile memory applications. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aaa859

    Article  Google Scholar 

  11. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Memory improvement with high-k buffer layer in metal/SrBi2Nb2O9/Al2O3/silicon gate stack for non-volatile memory applications. Superlattices Microstruct. 121, 55–63 (2018). https://doi.org/10.1016/j.spmi.2018.07.028

    Article  ADS  Google Scholar 

  12. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Electrical properties of Pb[Zr0.35Ti0.65]O3 on PEALD Al2O3 for NVM applications. Microelectron. Int. 35, 189–196 (2018). https://doi.org/10.1108/mi-06-2017-0029

    Article  Google Scholar 

  13. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 2001). https://doi.org/10.1093/acprof:oso/9780198507789.001.0001

    Book  Google Scholar 

  14. B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004). https://doi.org/10.1038/nmat1080

    Article  ADS  Google Scholar 

  15. K.M. Rabe, M. Dawber, C. Lichtensteiger, C.H. Ahn, J.M. Triscone, Modern physics of ferroelectrics: Essential background, in Topics in Applied Physics, ed. by K.M. Rabe, C.H. Ahn, J.-M. Triscone (Springer, Berlin, 2007), pp. 1–30

    Google Scholar 

  16. D.J. Lichtenwalner, R. Dat, O. Auciello, A.I. Kingon, Effect of electrodes on the ferroelectric properties of pulsed-laser ablation-deposited PbZrXTi1XO3 thin film capacitors. Ferroelectrics 152, 97–102 (1994). https://doi.org/10.1080/00150199408017603

    Article  Google Scholar 

  17. C.A.P. De Araujo, J.D. Cuchiaro, D.L. Mc Millan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995). https://doi.org/10.1038/374627a0

    Article  ADS  Google Scholar 

  18. Y. Ding, J.S. Liu, J.S. Zhu, Y.N. Wang, Stacking faults and their effects on ferroelectric properties in strontium bismuth tantalate. J. Appl. Phys. 91, 2255–2261 (2002). https://doi.org/10.1063/1.1431428

    Article  ADS  Google Scholar 

  19. R. Sahu, P. Kumar, Microstructural, dielectric and ferroelectric properties of Sr0.8Bi2.15Ta2O9 ceramics synthesized by microwave processing technique. Phase Transit. 93, 91–99 (2020). https://doi.org/10.1080/01411594.2019.1702190

    Article  Google Scholar 

  20. C.H. Lu, Y.C. Chen, Sintering and decomposition of ferroelectric layered perovskites: Strontium bismuth tantalate ceramics. J. Eur. Ceram. Soc. 19, 2909–2915 (1999). https://doi.org/10.1016/S0955-2219(99)00076-X

    Article  Google Scholar 

  21. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Structural and electrical characteristics of HfO2 film deposited by rf sputtering and plasma enhanced atomic layer deposition, in International Workshop on the Physics of Semiconductor and Devices (Springer, LLC, Cham, 2019), pp. 517–524. https://doi.org/10.1007/978-3-319-97604-4_80.

  22. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications. Appl. Phys. A 124, 92 (2018). https://doi.org/10.1007/s00339-018-1555-z

    Article  ADS  Google Scholar 

  23. D.K. Schroder, Semiconductor Material and Device Characterization. IEEE Press (2005). https://doi.org/10.1002/0471749095

    Article  Google Scholar 

  24. H. Kim, P.C. McIntyre, K.C. Saraswat, Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106–108 (2003). https://doi.org/10.1063/1.1533117

    Article  ADS  Google Scholar 

  25. P. Singh, A.N. Bhatt, A. Bansal, R.K. Singh, B.R. Singh, Lead-zirconate-titanate based metal/ferroelectric/high-K/semiconductor (M/Fe/High-K/S) gate stack for non-volatile memory applications. Ferroelectrics 504, 139–148 (2016). https://doi.org/10.1080/00150193.2016.1240565

    Article  Google Scholar 

  26. C.H. Chien, D.Y. Wang, M.J. Yang, P. Lehnen, C.C. Leu, S.H. Chuang, T.Y. Huang, C.Y. Chang, High-performance Pt/SrBi2Ta2O9/HfO2/Si structure for nondestructive readout memory. IEEE Electron. Device Lett. 24, 553–555 (2003). https://doi.org/10.1109/LED.2003.816582

    Article  ADS  Google Scholar 

  27. A. Roy, A. Dhar, D. Bhattacharya, S.K. Ray, Structural and electrical properties of metal–ferroelectric–insulator–semiconductor structure of Al/SrBi2Ta2O9/HfO2/Si using HfO2 as buffer layer. J. Phys. D Appl. Phys. 41, 095408 (2008). https://doi.org/10.1088/0022-3727/41/9/095408

    Article  ADS  Google Scholar 

  28. T. Horiuchi, M. Takahashi, Q.H. Li, S. Wang, S. Sakai, Lowered operation voltage in Pt/SrBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by oxynitriding Si. Semicond. Sci. Technol. 25, 055005 (2010). https://doi.org/10.1088/0268-1242/25/5/055005

    Article  ADS  Google Scholar 

  29. K. Takahashi, K. Aizawa, B.E. Park, H. Ishiwara, Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 44, 6218–6220 (2005). https://doi.org/10.1143/JJAP.44.6218

    Article  Google Scholar 

  30. L. Goux, Z. Xu, B. Kaczer, G. Groeseneken, D.J. Wouters, Deposition of 60 nm thin Sr0.8Bi2.2Ta2O9 layers for application in scaled 1T1C and 1T FeRAM devices. Microelectron. Eng. 80, 162–165 (2005). https://doi.org/10.1016/j.mee.2005.04.061

    Article  Google Scholar 

  31. C.C. Leu, C.-F. Leu, C.-H. Chien, M.-J. Yang, R.-H. Huang, C.-H. Lin, F.-Y. Hsu, Properties of Pt∕SrBi2Ta2O9∕BL∕Si MFIS structures containing HfO2, SiO2, and Si3N4 buffer layers. Electrochem. Solid State Lett. 10, G25 (2007). https://doi.org/10.1149/1.2710176

    Article  Google Scholar 

  32. T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Memory window widening of Pt/SrBi2Ta2O9/HfO2/Si ferroelectric-gate field-effect transistors by nitriding Si. Semicond. Sci. Technol. 24, 105026 (2009). https://doi.org/10.1088/0268-1242/24/10/105026

    Article  ADS  Google Scholar 

  33. Y. Zhou, High-κ insulator thin films and retention properties of MFIS diodes, in Material Research Society Symposium Proceedings (Cambridge University Press, 2011), pp. 1–7. https://doi.org/10.1557/opl.2011.1398

  34. C.-C. Leu, C.-H. Lin, C.-H. Chien, M.-J. Yang, Effects of HfO2 buffer layer thickness on the properties of Pt/SrBi2Ta2O9/HfO2/Si structure. J. Mater. Res. 23, 2023–2032 (2008). https://doi.org/10.1557/jmr.2008.0248

    Article  ADS  Google Scholar 

  35. Z. Xu, L. Goux, B. Kaczer, H. Vander Meeren, D.J. Wouters, G. Groeseneken, Relevance of the pulsed capacitance–voltage measurement technique for the optimization of SrBi2Ta2O9/high-k stack combination to be used in FeFET devices. Microelectron. Eng. 83, 2564–2569 (2006). https://doi.org/10.1016/j.mee.2006.07.001

    Article  Google Scholar 

  36. M.H. Tang, Z.H. Sun, Y.C. Zhou, Y. Sugiyama, H. Ishiwara, Capacitance–voltage and retention characteristics of Pt/SrBi2Ta2O9/HfO2/Si structures with various buffer layer thickness. Appl. Phys. Lett. 94, 212907 (2009). https://doi.org/10.1063/1.3147859

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Mrs. Shweta Jha and her family for her support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Jha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, R.K., Singh, P., Kashniyal, U. et al. Impact of HfO2 buffer layer on the electrical characteristics of ferroelectric/high-k gate stack for nonvolatile memory applications. Appl. Phys. A 126, 444 (2020). https://doi.org/10.1007/s00339-020-03632-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03632-0

Keywords

Navigation