Skip to main content
Log in

Tuning the optical, electrical resistivity and structural properties of DC magnetron sputtered aluminum zinc oxide films by changing the oxygen flow rate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films of aluminum zinc oxide (AZO) were fabricated by DC reactive magnetron sputtering from 50 wt% Al/Zn metallic target. The structure and optical constants of AZO films were controlled by changing the oxygen (O2) flow rate. X-Ray diffraction revealed that the addition of oxygen transforms the crystalline nature of the metallic Al/Zn to completely amorphous film at 4.5 sccm. The film density, surface roughness and deposition rate were evaluated from X-ray reflectometry measurements and they were found to decrease strongly upon transformation from metallic to oxidic sputtering mode. The optical constants were extracted from the ellipsometry measurements. As O2 flow increased from 4.5 to 30 sccm, the optical band gap increased from 4.74 to 5.33 eV whereas the refractive index decreased simultaneously. Low resistivity films were obtained as O2 flow increased from 0 to 4 sccm whereas insulating films were obtained for O2 flows above 4 sccm. The results indicated that by regulating the oxygen flow diverse ZAO films with diverse chemical stoichiometries and properties can be tuned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Gupta, V. Singh, P. Katyal, Mater. Today Proc. 5, 27989–27997 (2018)

    Article  Google Scholar 

  2. C.H. Shin, S.Y. Cha, H.C. Lee, W.-J. Lee, B.-G. Yu, D.-H. Kwak, Integr. Ferroelectr. 34, 113 (2001)

    Article  Google Scholar 

  3. J. Gottmann, E. Kreutz, Surf. Coat. Technol. 116, 1189 (1999)

    Article  Google Scholar 

  4. X. Nie, E. Meletis, J. Jiang, A. Leyland, A. Yerokhin, A. Matthews, Surf. Coat. Technol. 149, 245 (2002)

    Article  Google Scholar 

  5. M. Serenyi, T. Lohner, G. Safran, J. Szívos, Vacuum 128, 213–218 (2016)

    Article  ADS  Google Scholar 

  6. S. Bhavsar, G.B. Patel, N.L. Singh, Phys. B 533, 12–16 (2018)

    Article  ADS  Google Scholar 

  7. F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q. Guo, Appl. Phys. Lett. 105, 162107 (2014)

    Article  ADS  Google Scholar 

  8. W. Xu, J. Jiang, S. Xu, Y. Zhang, H. Xu, L. Han, X. Feng, J. Alloys Compd. 791, 773–778 (2019)

    Article  Google Scholar 

  9. G.V. Naik, A. Boltasseva, Phys. Status Solidi (RRL) 4, 295–297 (2010)

    Article  ADS  Google Scholar 

  10. J. Cai, D. Han, Y. Geng, L. Wang, S. Zhang, Y. Wang, IEEE T. Electron Dev. 60, 2432–2435 (2013)

    Article  ADS  Google Scholar 

  11. S. Lu, Z. Wang, H. Yan, R. Wang, K. Lu, Y. Cheng, W. Qin, X. Wu, J. Energy Chem. 41, 87–92 (2020)

    Article  Google Scholar 

  12. T.-Y. Yun, S.-R. Park, J.-Y. Baek, H.-J. Han, C.-W. Jeon, Mol. Cryst. Liq. Cryst. 586, 82–87 (2013)

    Article  Google Scholar 

  13. S. Ullah, M. Lucci, F. De Matteis, I. Davoli, Thin Solid Films 640, 109–115 (2017)

    Article  ADS  Google Scholar 

  14. D.B. Fullager, G.D. Boreman, C.D. Ellinger, T. Hofmann, Thin Solid Films 653, 267–273 (2018)

    Article  ADS  Google Scholar 

  15. A. Eshaghi, M. Hajkarimi, Optik 125, 5746–5749 (2014)

    Article  ADS  Google Scholar 

  16. E. Chason, T.M. Mayer, Crit. Rev. Solid State Mater. Sci. 22, 1 (1997)

    Article  ADS  Google Scholar 

  17. B. Lengeler, M.H. Hüppauff, Fresenius J. Anal. Chem. USSR 346, 155 (1993)

    Article  Google Scholar 

  18. S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)

    Article  ADS  Google Scholar 

  19. W. Theiss, in SCOUT Thin Film Analysis Software Handbook, Hard-and Software, ed. by M. Theiss (Dr. Bernhard-Klein Str. 110, D-52078, Aachen, Germany, 2000)

    Google Scholar 

  20. O. Kappertz, R. Drese, M. Wuttig, J. Vac. Sci. Technol., A 20, 2084 (2002)

    Article  ADS  Google Scholar 

  21. L.J. Meng, M.P. Dos Santos, Appl. Surf. Sci. 68, 319 (1993)

    Article  ADS  Google Scholar 

  22. S.H. Mohamed, R. Drese, Thin Solid Films 513, 64–71 (2006)

    Article  ADS  Google Scholar 

  23. M. Chen, Z. Pei, C. Sun, L. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)

    Article  ADS  Google Scholar 

  24. W.H. Ha, M.H. Choo, S. Im, J. Non-Cryst, Solids 203, 78 (2002)

    Google Scholar 

  25. I. Sieber, N. Wanderka, I. Urban, I. Drfel, E. Schierhorn, F. Fenske, W. Fuhs, Thin Solid Films 230, 108 (1998)

    Article  Google Scholar 

  26. H.P.R. Frederikse, D.R. Lide (eds.), CRC Handbook of Chemistry and Physics, 78th edn (CRC Press, 1997–1998)

  27. T.E. Hartman, J. Vac. Sci. Technol. 2, 239 (1965)

    Article  ADS  Google Scholar 

  28. S.H. Mohamed, O. Kappertz, T.P.L. Pedersen, R. Drese, M. Wuttig, Phys. Stat. Sol. (a) 198, 224–237 (2003)

    Article  ADS  Google Scholar 

  29. P.-W. Chen, S.-Y. Huang, C.-C. Wang, S.-H. Yuan, D.-S. Wuu, J. Alloys Compd. 791, 1213–1219 (2019)

    Article  Google Scholar 

  30. S.-D. Mo, W.Y. Ching, Phys. Rev. B 57, 15219 (1998)

    Article  ADS  Google Scholar 

  31. O. Madelung, M. Schulz, H. Weiss (eds.), Numerical Data and Functional Relationships in Science and Technology, Vol. 17b of Landolt-Bornstein New Series (Springer, Berlin, 1982), p. 35

    Google Scholar 

  32. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samest, Thin Solid Films 371, 218 (2000)

    Article  ADS  Google Scholar 

  33. J. Wang, R. Chen, L. Xiang, S. Komarneni, Ceram. Int. 44, 7357–7377 (2018)

    Article  Google Scholar 

  34. W. Zhang, J. Gan, L. Li, Z. Hu, L. Shi, N. Xu, J. Sun, J. Wu, Mater. Sci. Semicond. Process. 74, 147–153 (2018)

    Article  Google Scholar 

  35. L. Sun, J.T. Grant, J.G. Jones, N.R. Murphy, Opt. Mater. 84, 146–157 (2018)

    Article  ADS  Google Scholar 

  36. J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992)

    Article  ADS  Google Scholar 

  37. J.W. Elam, D. Routkevitch, S.M. George, J. Electrochem. Soc. 150, G339–G347 (2003)

    Article  Google Scholar 

  38. M. Vanmathi, I. Mohamed, S.K. Marikkannanm, M. Venkatswarlu, J. Ovonic Res. 13, 345–349 (2017)

    Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. A. Hadia or S. H. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.S., Hadia, N.M.A. & Mohamed, S.H. Tuning the optical, electrical resistivity and structural properties of DC magnetron sputtered aluminum zinc oxide films by changing the oxygen flow rate. Appl. Phys. A 125, 776 (2019). https://doi.org/10.1007/s00339-019-3070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3070-2

Navigation