Skip to main content
Log in

Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide thin films were deposited on glass substrates at different oxygen flow rates by DC reactive magnetron sputtering. The oxygen flow rate was found to be one of the crucial parameters which influence structural, optical and electrical properties of grown films. The structural and optical characterization of the deposited films was carried out using X-ray diffraction and UV–visible spectroscopy, respectively. Swanepoel envelope and Drude–Lorentz (DL) models were applied to extract the optoelectronic parameters such as refractive index, dispersion energy and plasma frequency. Structurally, grain size was found to decrease with increase in oxygen flow rate during deposition. Moreover, all the films exhibited preferred (002) orientation confirming c-axis orientation of the films perpendicular to the substrate. For a particular range of oxygen flow rates, columnar growth was achieved. Marginal increase in the optical band gap from 3.14 to 3.22 eV was observed as the oxygen flow rate increased from 3 to 10 sccm. Calculated plasma frequency from the DL model was found to be in the infrared region. It has decreased as oxygen flow rate increased with the value from 1.625 × 1014 rad/s (862 cm−1) to 1.072 × 1014 rad/s (568 cm−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Garcia-Mendez, A. Bedora-Calle, R.R. Segura, V. Coello, Investigation of the annealing effects on the structural and optoelectronic properties of RF-sputtered ZnO films studied by the Drude–Lorentz model. Appl. Phys. A 120, 1375 (2015)

    Article  ADS  Google Scholar 

  2. D.C. Look, Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  3. J.-L. Tian, H.-Y. Zhang, G.-G. Wang, X.-Z. Wang, R. Sun, L. Jin, J.-C. Han, Influence of film thickness and annealing temperature on the structural and optical properties of ZnO thin films on Si (100) substrates grown by atomic layer deposition. Superlattices Microstruct. 83, 719 (2015)

    Article  ADS  Google Scholar 

  4. Y. Nishi, T. Miyata, T. Minami, The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells. Thin Solid Films 528, 72 (2013)

    Article  ADS  Google Scholar 

  5. S.S. Wilson, J.P. Bosco, Y. Tolstova, D.O. Scanlon, G.W. Watson, H.A. Atwater, Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells. Energy Environ. Sci. 7, 3606 (2014)

    Article  Google Scholar 

  6. S. Ilican, M. Caglar, Y. Calgar, Preparation and characterization of ZnO thin films deposited by sol–gel spin coating method. J. Optoelectron. Adv. Mater. 10, 2578 (2008)

    Google Scholar 

  7. M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Sanchez Juarez, F. Yakuphanoglud, A. Tiburcio Silver, A comparative study on structural, optical, photoconductivity properties of In and Al doped ZnO thin films grown onto glass and FTO substrates grown by spray pyrolysis process. J. Alloys Compd. 506, 548 (2010)

    Article  Google Scholar 

  8. S.S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim. Acta 53, 2226 (2008)

    Article  Google Scholar 

  9. W.T. Yen, Y.C. Lin, J.H. Ke, Surface textured ZnO: Al thin films by pulsed DC magnetron sputtering for solar cell applications. Appl. Surf. Sci. 256, 960 (2010)

    Article  ADS  Google Scholar 

  10. G. Kiriakidis, M. Suchea, S. Christoulakis, P. Horvath, T. Kitsopoulos, J. Stoemenos, Structural characterization of ZnO thin films by dc magnetron sputtering. Thin Solid Films 515, 8577 (2007)

    Article  ADS  Google Scholar 

  11. E. Sachet, M.D. Losego, J. Guske, S. Franzen, J.P. Maria, Mid infrared surface plasmon resonance in zinc oxide semiconductor thin films. Appl. Phys. Lett. 102, 0511111 (2013)

    Article  ADS  Google Scholar 

  12. Dongping Zhang, Ping Fan, Xingmin Cai, Jianjun Huang, Lili Ru, zhuanghao Zheng, Guangxing Liang, Yukun Huang, Properties of ZnO thin films deposited by DC reactive magnetron sputtering under different plasma power. Appl. Phys. A. 97, 437–441 (2009)

    Article  ADS  Google Scholar 

  13. S. Uthanna, T.K. Subramanyam, B.S. Naidu, G.M. Rao, Structure-composition-property dependence in reactive magnetron sputtered ZnO thin films. Opt. Mater. 19, 461 (2002)

    Article  ADS  Google Scholar 

  14. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  15. K.J. Saji, M.K. Jayaraj, Effect of oxygen partial pressure on optical and electrical properties of co-sputtered amorphous zinc indium tin oxide thin films. Phys. Status Solidi (A) 205, 1625 (2008)

    Article  ADS  Google Scholar 

  16. M. Fox, Optical properties of solids, 2nd edn. (Oxford University Press, New York, 2011). ISBN 978-0-19-957337-0

    Google Scholar 

  17. C.R. Aita, A.J. Purdes, K.L. Lad, P.D. Funkenbusch, The effect of O2 on reactively sputtered zinc oxide. J. Appl. Phys. 51, 5533 (1980)

    Article  ADS  Google Scholar 

  18. E.M. Alkoy, P.J. Kelly, Structure and properties of copper oxide and copper aluminum oxide coatings prepared by pulsed magnetron sputtering of power targets. Vacuum 79, 221 (2005)

    Article  ADS  Google Scholar 

  19. A. Frolich, M. Wegener, Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials. Opt. Mater. Express 1–5, 883 (2011)

    Article  Google Scholar 

  20. S.H. Wemple, M. DiDomenico Jr, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3–4, 1338 (1971)

    Article  Google Scholar 

  21. R.N. Gayen, K. Sarkar, S. Hussain, R. Bhar, A.K. Pal, ZnO films prepared by modified sol gel technique. Indian J. Pure Appl. Phys. 49, 470 (2011)

    Google Scholar 

  22. D.K. Madhup, D.P. Subedi, A. Huczko, Optoelectron. Influence of doping on optical properties of ZnO nano films. Adv. Mater. 4–10, 1582 (2010)

    Google Scholar 

  23. B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, R. Wu, D.W. Zeng, C.S. Xie, Influence of hydrogen introduction on structure and properties of ZnO thin films during sputtering and post-annealing. Thin Solid Films 519, 3809 (2011)

    Article  ADS  Google Scholar 

  24. Z.H. Zhang, M. He, Q. Li, Obtaining the effective electron mass from valence electron energy-loss spectroscopy. Solid State Commun. 149, 1856 (2009)

    Article  ADS  Google Scholar 

  25. Y. Imanaka, M. Oshikiri, K. Takehana, T. Takamasu, G. Kido, Strong Coulomb correlation effects in ZnO. Phys. B 298, 211 (2001)

    Article  ADS  Google Scholar 

  26. M. Oshikiri, Y. Imanaka, F. Aryasetiawan, G. Kido, Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first principle theory. Phys. B 298, 472 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Manipal University for the financial support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjaya Kekuda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobbiner, C.R., Ali Avanee Veedu, M. & Kekuda, D. Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering. Appl. Phys. A 122, 272 (2016). https://doi.org/10.1007/s00339-016-9806-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9806-3

Keywords

Navigation