Skip to main content
Log in

Design and performance analysis of GAA Schottky barrier-gate stack-dopingless nanowire FET for phosphine gas detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper proposed a Gate-All-Around (GAA) Schottky Barrier (SB)-Gate Stack (GS)-based Dopingless Cylindrical Nanowire Field-Effect Transistor (SB-GS-DNWFET) for the application of phosphine (PH3) gas detection. The Schottky barrier nanowire FET is used over a conventional nanowire FET at nanometer scale due to its inherent advantages such as low parasitic resistance and higher ON-state current. In this sensor, the changes in the work function of the metal gate electrode have been used for the detection amount of gas. Three different catalytic metals such as platinum, rhodium, and iridium are preferred as gate electrodes for PH3 gas detection because of their reactivity and sensitivity towards that gas. The sensitivity can be measured in terms of change in ON-state current (ION), subthreshold leakage current (IOFF), ON-state current-to-OFF-state current ratio (ION/IOFF), and threshold voltage (Vth) for sensing the gas molecules. The work function of these catalytic metals at gate electrode is varied as 50, 100, 150, and 200 meV to investigate the change in sensitivity parameters. In this work, the sensitivity of the Schottky barrier GAA-NWFET gas sensor with different catalytic metals (Pt, Rh, Ir) is compared and the impact of process parameters such as channel length and gate stacked (GS = SiO2 + high-k dielectric) on the sensitivity parameters is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Feng, F. Shao, Y. Shi, Q. Wan, Gas sensors based on semiconducting nanowire field-effect transistors. Open Access Sens. 14, 17406–17429 (2014)

    Google Scholar 

  2. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain-size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators B Chem. 3, 147–155 (1991)

    Article  Google Scholar 

  3. L.E. Kreno, K. Leong, O.K. Farha, M. Van Allendorf, R.P. Duyne, J.T. Hupp, Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  Google Scholar 

  4. N. Valmas, P.R. Ebert, Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. PLoS one 1(1), e130 (2006)

    Article  ADS  Google Scholar 

  5. F.L. Gazoni, C.G. Wilsmann, F. Flore, F. Silveira, R.A. Bampi, R. Boufleur, M. Lovato, Efficacy of phosphine gas against the darkling beetle (Alphitobius diaperinus). Acta Scientiae Veterinariae 39(2), 1–6 (2011)

    Google Scholar 

  6. B. Jena, K.P. Pradhan, P.K. Sahu, Investigation on cylindrical gate all around (GAA) to nanowire MOSFET for circuit application. Electron. Energ. 28, 637–643 (2015)

    Google Scholar 

  7. Pratap Y, Kumar M, Gupta M. Sensitivity investigation of gate-all-around junctionless transistor for hydrogen gas detection. In: 2016 IEEE International Nanoelectronics Conference (INEC). IEEE, pp. 1–2 (2016)

  8. R. Gautam, M. Saxena, R.S. Gupta, M. Gupta, Gate-all-around nanowire MOSFET with catalytic metal gate for gas sensing applications. IEEE Trans. Nanotechnol. 12(6), 939–943 (2013)

    Article  ADS  Google Scholar 

  9. N.K. Singh, A. Raman, S. Singh, N. Kumar, A novel high mobility In1−xGaxAs cylindrical-gate-nanowire FET for gas sensing application with enhanced sensitivity. Superlattices Microstruct. 111, 518–528 (2017)

    Article  ADS  Google Scholar 

  10. M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, Impact of gate material engineering (GME) on analog/RF performance of nanowire Schottky-Barrier gate all around (GAA) MOSFET for low power wireless applications: 3D T-CAD simulation. Microelectron. J. 45(11), 1508–1514 (2014)

    Article  Google Scholar 

  11. S. Ozdemir, J.L. Gole, The potential of porous silicon gas sensors. Curr. Opin. Solid State Mater. Sci. 11(5–6), 92–100 (2007)

    Article  ADS  Google Scholar 

  12. S. Ozdemir, J.L. Gole, Porous silicon gas sensors for room temperature detection of ammonia and phosphine. ECS Trans. 16(11), 379–385 (2008)

    Article  Google Scholar 

  13. A.E. Varfolomeev, A.I. Volkov, A.V. Eryshkin, V.V. Malyshev, A.S. Rasumov, S.S. Yakimov, Detection of phosphine and arsine in air by sensors based on SnO2 and ZnO. Sens. Actuators B: Chem. 7(1–3), 727–729 (1992)

    Article  Google Scholar 

  14. M.H. Weston, W. Morris, P.W. Siu, W.J. Hoover, D. Cho, R.K. Richardson, O.K. Farha, Phosphine gas adsorption in a series of metal–organic frameworks. Inorg. Chem. 54(17), 8162–8164 (2015)

    Article  Google Scholar 

  15. Y.S. Chung, K. Evans, W. Glaunsinger, Work function response of thin gold film surfaces to phosphine and arsine. Appl. Surf. Sci. 125(1), 65–72 (1998)

    Article  ADS  Google Scholar 

  16. G.E. Mitchell, M.A. Henderson, J.M. White, The adsorption of PH3 on Pt(LLL) and its influence on coadsorbed CO. Surf. Sci. 191(3), 425–448 (1987)

    Article  ADS  Google Scholar 

  17. A.L. Garner, K. Koide, Fluorescent method for platinum detection in buffers and serums for cancer medicine and occupational hazards. Chem. Commun. 1, 83–85 (2009)

    Article  Google Scholar 

  18. G. Lu, J.E. Crowell, Evidence for a precursor to decomposition for phosphine adsorption on rhodium/alumina. J. Phys. Chem. 94(15), 5644–5646 (1990)

    Article  Google Scholar 

  19. Y. Cai, Z.H. Li, Y.Q. Yang, Y.Z. Yuan, Direct Immobilization of phosphine-rhodium complex on MCM-41 for propene hydroformylation. Chem. Res. Chin. Univ. 18(3), 311–315 (2002)

    Google Scholar 

  20. P. Braunstein, Y. Chauvin, J. Nähring, A. DeCian, J. Fischer, A. Tiripicchio, F. Ugozzoli, Rhodium (I) and iridium (I) complexes with β-Keto phosphine or phosphino enolate ligands. Catalytic transfer dehydrogenation of cyclooctane. Organometallics 15(26), 5551–5567 (1996)

    Article  Google Scholar 

  21. I. Cano, L.M. Martínez-Prieto, P.F. Fazzini, Y. Coppel, B. Chaudret, P.W. Van Leeuwen, Characterization of secondary phosphine oxide ligands on the surface of iridium nanoparticles. Phys. Chem. Chem. Phys. 19(32), 21655–21662 (2017)

    Article  Google Scholar 

  22. L.M. Lechuga, A. Calle, D. Golmayo, F. Briones, Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky Barrier sensors. Sens. Actuators 7, 614–618 (1992)

    Article  Google Scholar 

  23. AU Manual, ATLAS Device Simulation Software (Silvaco International, Santa Clara, 2014)

    Google Scholar 

  24. M. Jang, J. Lee, Analysis of Schottky Barrier height in small contacts using a thermionic-field emission model. ETRI J. 24(6), 455–461 (2002)

    Article  Google Scholar 

  25. M.S. Tyagi, Physics of Schottky Barrier Junctions. www.books.google.com (2013)

  26. G. Kumar, A. Raman, Pressure sensor based on MEMS nano-cantilever beam structure as a heterodielectric gate electrode of dopinglessá TFET. Superlattices Microstruct. 100, 535–547 (2016)

    Article  ADS  Google Scholar 

  27. K.P. Pradhan, M.R. Kumar, S.K. Mohapatra, P.K. Sahu, Analytical modeling of the threshold voltage for Cylindrical Gate All Around (CGAA) MOSFET using center potential. Ain Shams Eng. J. 6, 1171–1177 (2015)

    Article  Google Scholar 

  28. M. Kumar, S. Haldar, M. Gupta, R.S. Gupta, Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky Barrier cylindrical GAA MOSFETs. In: IOP Publication, vol. 31 (2016)

    Article  ADS  Google Scholar 

  29. S.I. Amin, R.K. Sarin, Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer. Appl. Phys. A 122(4), 380 (2016)

    Article  ADS  Google Scholar 

  30. A. Sharma, A. Jain, Y. Pratap, R.S. Gupta, Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)

    Article  ADS  Google Scholar 

  31. S. Singh, A. Raman, A Dopingless Gate-All-Around (GAA) Gate-Stacked Nanowire FET with Reduced Parametric Fluctuation Effects (Springer, Berlin, 2018)

    Book  Google Scholar 

  32. S. Singh, A. Raman, Gate-all-around charge plasma-based dual material gate-stack nanowire FET for enhanced analog performance. IEEE Trans. Electron Dev. 65(7), 3026–3032 (2018)

    Article  ADS  Google Scholar 

  33. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  34. S. Sahay, M.J. Kumar, Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE Trans. Electron Dev. 64(3), 1330–1335 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Raman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, A., Kakkar, D., Bansal, M. et al. Design and performance analysis of GAA Schottky barrier-gate stack-dopingless nanowire FET for phosphine gas detection. Appl. Phys. A 125, 787 (2019). https://doi.org/10.1007/s00339-019-3066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3066-y

Navigation