Skip to main content

Advertisement

Log in

Electric fatigue of BCZT ceramics sintered in different atmospheres

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ceramics with excellent piezoelectric properties and environment friendliness are very potential alternatives for PbZrxTi1−xO3 (PZT) ceramics. The stability and reliability of ferroelectricity and piezoelectricity in BCZT ceramics under cyclic electric field are crucial to its long-term application. Herein, BCZT ceramics were synthesized by sol–gel method and different sintering atmospheres and the influences of sintering atmosphere on the fatigue behaviors of ferroelectric and piezoelectric properties have been investigated. XPS results confirm that the oxygen vacancy concentration of BCZT ceramics sintered in oxygen, air, and nitrogen atmosphere gradually increases. After 106 cycles, the polarization of all BCZT ceramics decreases to some extent and the fatigue resistance of polarization of BCZT ceramics sintered in the air is superior to BCZT ceramics sintered in oxygen and nitrogen atmospheres, which may result from the additional contribution of higher leakage current caused by relatively poor densification of BCZT ceramics sintered in air to polarization. The internal bias field of BCZT ceramics sintered in air, O2 and N2 atmospheres after fatigue decreases, and the reduced amplitude of internal bias field in BCZT ceramics with less oxygen vacancies sintered in air and oxygen atmospheres is obviously higher than that in BCZT ceramics with more oxygen vacancies sintered in nitrogen atmosphere, which is due to the redistribution of oxygen vacancy under the repetition of external electric field. After 106 cycles, the maximum electric field-induced strain and d33* of BCZT ceramics sintered in the air and oxygen atmospheres decrease and that of BCZT ceramics sintered in nitrogen atmosphere increases. The enhanced fatigue resistance of piezoelectric response of BCZT ceramics sintered in nitrogen atmosphere results from the interaction of (100) orientation, grain refinement, and “wake up” effect caused by the repetition of enough external electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. S. Trolier-McKinstry, S. Zhang, A.J. Bell, X. Tan, Annu. Rev. Mater. Res. 48, 191 (2018)

    Google Scholar 

  2. K. Shibata, R. Wang, T. Tou, J. Koruza, MRS Bull. 43, 612 (2018)

    Google Scholar 

  3. Z. Du, C. Zhao, H.C. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, J. Fang, J. Alloy Compd. 801, 27 (2019)

    Google Scholar 

  4. X. Fu, W. Cai, G. Chen, R. Gao, J. Mater. Sci. Mater. Electron. 28, 8177 (2017)

    Google Scholar 

  5. Z. Fan, J. Koruza, J. Rödel, X. Tan, Acta Mater. 151, 253 (2018)

    Google Scholar 

  6. F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, L. Liu, Ceram. Int. 43, 5564 (2017)

    Google Scholar 

  7. S. Pang, L. Yang, J. Qin, H. Qin, H. Xie, H. Wang, C. Zhou, J. Xu, Appl. Phys. A 125, 119 (2019)

    ADS  Google Scholar 

  8. K. Shalini, D. Prabhu, N. Giridharan, Appl. Phys. A 124, 866 (2018)

    ADS  Google Scholar 

  9. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 1705171 (2018)

    Google Scholar 

  10. V. Bijalwan, H. Hughes, H. Pooladvand, P. Tofel, B. Nan, V. Holcman, Y. Bai, T.W. Button, Mater. Res. Bull. 114, 121 (2019)

    Google Scholar 

  11. L. Wang, W. Bai, X. Zhao, F. Wen, L. Li, W. Wu, P. Zheng, J. Zhai, J. Mater. Sci. Mater. Electron. 30, 9219 (2019)

    Google Scholar 

  12. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    ADS  Google Scholar 

  13. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, Acta Mater. 155, 331 (2018)

    Google Scholar 

  14. S. Li, C. Wang, L. Li, Q. Shen, L. Zhang, J. Alloy Compd. 730, 182 (2018)

    Google Scholar 

  15. M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Appl. Phys. A 123, 583 (2017)

    ADS  Google Scholar 

  16. L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, ACS Appl. Mater. Interface 8, 31109 (2016)

    Google Scholar 

  17. Y. Zhang, H. Sun, W. Chen, J. Phys. Chem. Solids 114, 207 (2018)

    ADS  Google Scholar 

  18. Z. Liu, R. Yuan, D. Xue, W. Cao, T. Lookman, Acta Mater. 157, 155 (2018)

    Google Scholar 

  19. Y. Liu, Y. Chang, F. Li, B. Yang, Y. Sun, J. Wu, S. Zhang, R. Wang, W. Cao, ACS Appl. Mater. Interface 9, 29863 (2017)

    Google Scholar 

  20. W. Bai, D. Chen, P. Li, B. Shen, J. Zhai, Z. Ji, Ceram. Int. 42, 3429 (2016)

    Google Scholar 

  21. Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloy Compd. 794, 542 (2019)

    Google Scholar 

  22. N. Chaiyo, D.P. Cann, N. Vittayakorn, Mater. Design. 133, 109 (2017)

    Google Scholar 

  23. Y. Zhang, J. Glaum, M.C. Ehmke, K.J. Bowman, J.E. Blendell, M.J. Hoffman, J. Am. Ceram. Soc. 99, 1287 (2016)

    Google Scholar 

  24. V. Rojas, J. Koruza, E.A. Patterson, M. Acosta, X. Jiang, N. Liu, C. Dietz, J. Rödel, J. Am. Ceram. Soc. 100, 4699 (2017)

    Google Scholar 

  25. Y. Liu, Y. Chang, E. Sun, F. Li, S. Zhang, B. Yang, Y. Sun, J. Wu, W. Cao, ACS Appl. Mater. Interface 10, 31488 (2018)

    Google Scholar 

  26. Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mater. Sci. Eng. B Adv. 192, 52 (2015)

    Google Scholar 

  27. J. Glaum, M. Hoffman, J. Am. Ceram. Soc. 97, 665 (2014)

    Google Scholar 

  28. X. Jia, J. Zhang, L. Wang, J. Wang, H. Du, Y. Yao, L. Ren, F. Wen, P. Zheng, J. Am. Ceram. Soc. 102, 5203 (2019)

    Google Scholar 

  29. K. Tanaka, S. Takatsuka, H. Nishiyama, K. Kakimoto, AIP Adv. 9, 045102 (2019)

    ADS  Google Scholar 

  30. B. Akkopru-Akgun, W. Zhu, M.T. Lanagan, S. Trolier-McKinstry, J. Am. Ceram. Soc. 102, 5328 (2019)

    Google Scholar 

  31. Y.J. Kao, C.Y. Su, C. Pithan, D.F. Hennings, C.Y. Huang, R. Waser, J. Am. Ceram. Soc. 99, 1311 (2016)

    Google Scholar 

  32. Q. Lin, D. Wang, S. Li, J. Am. Ceram. Soc. 98, 2094 (2015)

    Google Scholar 

  33. S.W. Zhang, H. Zhang, B.P. Zhang, G. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009)

    Google Scholar 

  34. Z. Shen, X. Wang, H. Gong, L. Wu, L. Li, Ceram. Int. 40, 13833 (2014)

    Google Scholar 

  35. J.P.B. Silva, F.L. Faita, K. Kamakshi, K.C. Sekhar, J.A. Moreira, A. Almeida, M. Pereira, A.A. Pasa, M.J.M. Gomes, Sci. Rep.UK 7, 46350 (2017)

    ADS  Google Scholar 

  36. W. Bai, J. Hao, B. Shen, F. Fu, J. Zhai, J. Alloy Compd. 536, 189 (2012)

    Google Scholar 

  37. S. Ye, J. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)

    ADS  Google Scholar 

  38. C. Yang, H. Sui, H. Wu, G. Hu, J. Alloys Compd. 637, 315 (2015)

    Google Scholar 

  39. F. Zhang, L. Zhang, X. Guo, S. Yang, Q. Tian, S. Fan, Ceram. Int. 44, 13502 (2018)

    Google Scholar 

  40. D. Deng, Q. Guo, W. Hu, J. Phy. B Atomic Mol. Opt. 41, 225402 (2008)

    ADS  Google Scholar 

  41. J. Ma, X. Liu, W. Li, J. Alloy Compd. 581, 642 (2013)

    Google Scholar 

  42. A. Tkach, O. Okhay, A. Almeida, P.M. Vilarinho, Acta Mater. 130, 249 (2017)

    Google Scholar 

  43. L. Zhang, Z. Yao, M.T. Lanagan, H. Hao, J. Xie, Q. Xu, M. Yuan, M. Sarkarat, M. Cao, H. Liu, J. Eur. Ceram. Soc. 38, 2534 (2018)

    Google Scholar 

  44. H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Solid State Commun. 201, 64 (2015)

    ADS  Google Scholar 

  45. Z. Zhao, X. Li, H. Ji, Y. Dai, T. Li, J. Alloy Compd. 637, 291 (2015)

    Google Scholar 

  46. Y. Zhang, J. Glaum, M.C. Ehmke, J.E. Blendell, K.J. Bowman, M.J. Hoffman, J. Am. Ceram. Soc. 99, 174 (2016)

    Google Scholar 

  47. J. Zhao, Z. Yue, W. Wang, Z. Gui, L. Li, J. Electroceram. 21, 581 (2008)

    Google Scholar 

  48. H. Simons, J. Glaum, J.E. Daniels, A.J. Studer, A. Liess, J. Rödel, M. Hoffman, J. Appl. Phys. 112, 044101 (2012)

    ADS  Google Scholar 

  49. O. Namsar, C. Uthaisar, S. Pojprapai, J. Mater. Sci. Mater. Electron. 29, 7188 (2018)

    Google Scholar 

  50. H. Guo, X. Liu, J. Rödel, X. Tan, Adv. Funct. Mater. 25, 270 (2015)

    Google Scholar 

  51. W.L. Tan, K.T. Faber, D.M. Kochmann, Acta Mater. 164, 704 (2019)

    Google Scholar 

  52. G. Arlt, H. Neumann, Ferroelectr. 87, 109 (1988)

    Google Scholar 

  53. Y. Chang, S. Poterala, D. Yener, G.L. Messing, J. Am. Ceram. Soc. 96, 1390 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and People’s Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA90015), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. CSTC2018jcyjAX0416).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Cai or Chunlin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Cai, W., Zhou, C. et al. Electric fatigue of BCZT ceramics sintered in different atmospheres. Appl. Phys. A 125, 759 (2019). https://doi.org/10.1007/s00339-019-3062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3062-2

Navigation