Skip to main content

Advertisement

Log in

Microstructure, dielectric, and energy storage performance of (Zn1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, (Ba0.85Ca0.15)(Zr0.10Ti0.90)1-x(Zn1/3Nb2/3)xO3 ceramics were synthesized by conventional solid-phase methods, referred to as BCZT-xZN (x = 0.0, 0.1, 0.2, 0.3, 0.4). The effects of adding different contents of (Zn1/3Nb2/3)4+ ion on the microstructure, dielectric and ferroelectric properties of BCZT ceramics were studied. Scanning electron microscopy (SEM) results showed that the average particle size of the samples was significantly reduced after the addition of (Zn1/3Nb2/3)4+ ion, and a second phase appeared when the addition amount was ≥ 0.3. The dielectric properties show that with (Zn1/3Nb2/3)4+ ion replacing the B-site of BCZT ceramics, the dielectric constant decreases significantly and the Curie temperature decreases below room temperature. At the same time, we observed that the ceramic has good stability to temperature (-150 °C–200 °C) and frequency (102–106 Hz) changes. The addition of (Zn1/3Nb2/3)4+ ion can significantly reduce the residual polarization and improve the breakdown strength of ceramics. When x = 0.3, The maximum energy storage density of ceramics is 0.994 J/cm3, which is about four times higher than that of pure BCZT ceramic (0.25 J/cm3). These findings fully demonstrate the great potential of BCZT ceramics in energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Code availability

Not applicable.

References

  1. V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, Dielectric breakdown of BaO-B2O3-ZnO-[(BaZr0.2Ti0.80)O3]0.85-[(Ba0.70Ca0.30)TiO3]0.15 glass-ceramic composites. J. Non-Cryst. Solids. 358, 3510–3516 (2012)

    Article  CAS  Google Scholar 

  2. H.B. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd. 720, 116–125 (2017)

    Article  CAS  Google Scholar 

  3. Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)

    Article  CAS  Google Scholar 

  4. T. Wang, L. Jin, C.C. Li, Q.Y. Hu, X.Y. Wei, Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015)

    Article  CAS  Google Scholar 

  5. X. Hao, A review on the dielectric materials for high energy-storage application. J Adv Dielectr. 03, 1330001 (2013)

    Article  CAS  Google Scholar 

  6. B.W. Ricketts, G. Triani, A.D. Hilton, Dielectric energy storage densities in Ba1-xSrxTi1-yZryO3ceramics. J. Mater. Sci. Mater. Electron. 11, 513–517 (2000)

    Article  CAS  Google Scholar 

  7. J.B. Lim, S.J. Zhang, N. Kim, T.R. Shrout, High-temperature dielectrics in the BiScO3-BaTiO3-(K1/2Bi1/2)TiO3 ternary system. J. Am. Ceram. Soc. 92, 679–682 (2009)

    Article  CAS  Google Scholar 

  8. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics. J. Am. Ceram. Soc. 92, 110–118 (2009)

    Article  CAS  Google Scholar 

  9. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, Structure, dielectric, ferroelectric, and energy density properties of (1–x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48, 2151–2157 (2013)

    Article  CAS  Google Scholar 

  10. Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)

    Article  CAS  Google Scholar 

  11. Y. Wang, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x<=0.4) paraelectric ceramics. Ceram Int 41, 8252–8256 (2015)

    Article  CAS  Google Scholar 

  12. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35, 1785–1798 (2015)

    Article  CAS  Google Scholar 

  13. Y. Tian, X.L. Chao, L.L. Wei, P.F. Liang, Z.P. Yang, Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. J. Appl. Phys. 113, 1491 (2013)

    Google Scholar 

  14. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Dielectric responses of glass-added Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage capacitors. Physica B Condens. Matter. 440, 67–72 (2014)

    Article  CAS  Google Scholar 

  15. C. Fu, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000)

    Article  CAS  Google Scholar 

  16. M. Ahart, M. Somayazulu, R.E. Cohen, P. Ganesh, P. Dera, H.K. Mao, R.J. Hemley, Y. Ren, P. Liermann, Z.G. Wu, Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545-U542 (2008)

    Article  CAS  Google Scholar 

  17. B. Noheda, D.E. Cox, G. Shirane, S.E. Park, L.E. Cross, Z. Zhong, Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys. Rev. Lett. 86, 3891–3894 (2001)

    Article  CAS  Google Scholar 

  18. G. Bellaiche, Vanderbilt, Finite-temperature properties of Pb(Zr1-xTix)O3 alloys from first principles. Phys. Rev. Lett. 84, 5427–5430 (2000)

    Article  CAS  Google Scholar 

  19. W. Satoshi, S. Shingo, N. Tatsuo et al., Enhanced piezoelectric property of barium titanatesingle crystals with engineered domain configurations. Jpn. J. Appl. Phys. 38, 5505–5511 (1999)

    Article  Google Scholar 

  20. Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, R.E. Newnham, The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3. Mater. Res. Bull. 22, 1329–1335 (1987)

    Article  CAS  Google Scholar 

  21. T. Maiti, R. Guo, A.S. Bhalla, Structure-property phase diagram of BaZrxTi1-xO3 system. J. Am. Ceram. Soc. 91, 1769–1780 (2008)

    Article  CAS  Google Scholar 

  22. Y. Zhao, J. Xu, L. Yang, C. Zhou, X. Lu, C. Yuan, Q. Li, G. Chen, H. Wang, High energy storage property and breakdown strength of Bi0.5(Na0.82K0.18)0.5TiO3 ceramics modified by (Al0.5Nb0.5)4+ complexion. J. Alloys Compd. 666, 209–216 (2016)

    Article  CAS  Google Scholar 

  23. Y. Zhao, J. Xu, C. Zhou, C. Yuan, Q. Li, G. Chen, H. Wang, L. Yang, High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceram. Int. 42, 2221–2226 (2016)

    Article  CAS  Google Scholar 

  24. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A. 5, 554–563 (2017)

    Article  CAS  Google Scholar 

  25. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C. 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  26. G. Dong, S. Ma, J. Du, J. Cui, Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceram. Int. 35, 2069–2075 (2009)

    Article  CAS  Google Scholar 

  27. J. Khemprasit, B. Khumpaitool, Influence of Cr doping on structure and dielectric properties of LixCryNi1-x-yO ceramics. Ceram. Int. 41, 663–669 (2015)

    Article  CAS  Google Scholar 

  28. X. Wang, B. Zhang, L. Xu, X. Wang, Y. Hu, G. Shen, L. Sun, Dielectric properties of Y and Nb co-doped TiO2 ceramics. Sci. Rep. 7, 8517 (2017)

    Article  CAS  Google Scholar 

  29. X. Wang, B. Zhang, G. Shen, L. Sun, Y. Hu, L. Shi, X. Wang, C. Jie, L. Zhang, Colossal permittivity and impedance analysis of tantalum and samarium Co-doped TiO2 ceramics. Ceram. Int. 43, 13349–13355 (2017)

    Article  CAS  Google Scholar 

  30. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J. Appl. Phys. 127, 074103 (2020)

    Article  CAS  Google Scholar 

  31. R.Z. Chen, X.H. Wang, Z.L. Gui, L.T. Li, Effect of silver addition on the dielectric properties of barium titanate-based X7R ceramics. J. Am. Ceram. Soc. 86, 1022–1024 (2003)

    Article  CAS  Google Scholar 

  32. W. Weibull, A statistical distribution function of wide applicability. Jour. App. Mech. 18, 293–297 (1951)

    Article  Google Scholar 

  33. X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, T. Liang, Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32, 559–567 (2012)

    Article  CAS  Google Scholar 

  34. S. Xue, S. Liu, W. Zhang, J. Wang, L. Tang, B. Shen, J. Zhai, Dielectric properties and charge-discharge behaviors in niobate glass ceramics for energy-storage applications. J. Alloys Compd. 617, 418–422 (2014)

    Article  CAS  Google Scholar 

  35. M. Wei, J. Zhang, J. Huang, H. Chen, C. Yang, Microstructure and electrical properties of TiO2-CaO-MgO-Al2O3-SiO2 glass-ceramic with sol-gel method. J. Mater. Sci. Mater. Electron. 27, 11623–11627 (2016)

    Article  CAS  Google Scholar 

  36. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A. 4, 13778–13785 (2016)

    Article  CAS  Google Scholar 

  37. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Let. 15, 1767–1769 (1996)

    Article  CAS  Google Scholar 

  38. Z. Chen, J. Zhang, S. Xu, J. Xue, T. Jiang, Y. Hao, Influence of stacking faults on the quality of GaN films grown on sapphire substrate using a sputtered AIN nucleation layer. Mater. Res. Bull. 89, 193–196 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the National Natural Science Foundation of China (Grant No. 51302061), Natural Science Foundation of Hebei province (Grant No. E2014201076 and E2020201021), and Research Innovation Team of College of Chemistry and Environmental Science of Hebei University (Grant No. hxkytd2102).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to study conception and design. Material preparation was performed by KA, TF, FH, and data collection and analysis were performed by QS, ZY. The first draft of the manuscript was written by QS, and all authors commented on previous versions of the manuscript. Final manuscript read and approved by all authors.

Corresponding authors

Correspondence to Lei Liu or Jing Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Microstructure, dielectric and energy storage performance of (Zn1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics”.

Ethical approval

Hereby, we declare that the manuscript is our original work and not have been published or under editorial considerations anywhere else. The stated authors of the work have read the content and approved for submission of this manuscript to Journal of Materials Science: Materials in Electronics. There is no personal or financial conflict of interest. Further if our article has been accepted, we ensure that we will not publish it anywhere else in any form, in any language without getting consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., An, K., Yu, Z. et al. Microstructure, dielectric, and energy storage performance of (Zn1/3Nb2/3)4+ complex-ion modified (Ba0.85Ca0.15)(Zr0.10Ti0.90)O3 ceramics. J Mater Sci: Mater Electron 33, 18487–18496 (2022). https://doi.org/10.1007/s10854-022-08701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08701-z

Navigation