Skip to main content
Log in

Poly(aniline-co-3-aminophenol): enhanced crystallinity and solubility

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An improvement of physiochemical properties such as solubility, crystallinity, and the surface morphology of the copolymer have been achieved via the in-situ copolymerization of the monomers units using ammonium persulfate as an oxidising agent. To study the optical behavior of the as-synthesized copolymers UV–Vis spectroscopic analysis has been performed. Atomic force microscopy has been used to study the roughness profile and surface morphology. For the functional group characterization of the copolymer, FT-IR analysis has been considered. Electrical conductivity has been investigated by the two-probe method. The conductivity of copolymers (PA-co-3-AP)s has been diminished overall. The amount of molar feed in the composition determines the nature of conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Chiang, A.G. Macdiarmid, ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth. Met. 13, 193–205 (1986)

    Article  Google Scholar 

  2. W.S. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J. Chem Soc. Faraday Trans. 1(82), 2385–2400 (1986)

    Article  Google Scholar 

  3. A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)

    Article  Google Scholar 

  4. U.S. Waware, A.M.S. Hamouda, M. Rashid, Poly(aniline-co-2-hydroxyaniline): towards the thermal stability and higher solubility of polyaniline. Appl. Phys. A 125, 127 (2019)

    Article  ADS  Google Scholar 

  5. U.S. Waware, M. Rashid, A. M. S. Hamouda, Highly improved AC conductivity of poly(aniline-o-fluoroaniline). Ionics 25(3), 1057–1065 (2019)

    Article  Google Scholar 

  6. U.S. Waware, A. M. S. Hamouda, D. Majumdar, Optimization of physicochemical and dielectric features in the conductive copolymers of aniline and 2-aminophenol. Polym. Bull. 76(11), 5603–5617 (2019)

    Article  Google Scholar 

  7. G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 Nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4, 1–7 (2014)

    Google Scholar 

  8. K. Deb, A. Bera, B. Saha, Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv. 6, 94795–94802 (2016)

    Article  Google Scholar 

  9. Y. Guo, T. Wang, F. Chen, X. Sun, X. Li, Z. Yu, P. Wan, X. Chen, Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas sensors. Nanoscale 8(23), 12073–12080 (2016)

    Article  ADS  Google Scholar 

  10. X.-G. Li, M.-R. Huang, W. Duan, Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem. Rev. 102(9), 2925–3030 (2002)

    Article  Google Scholar 

  11. P. Saini, V. Choudhary, S. Details, Electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J. Mater. Sci. 48, 797 (2013)

    Article  ADS  Google Scholar 

  12. A.G. Macdiarmid, A.J. Heeger, Organic metals and semiconductors: the chemistry of polyacetylene, (CH)x, and its derivatives. Synth. Met. 1, 101–118 (1980)

    Article  Google Scholar 

  13. J. Zhang, D. Shan, S. Mu, A promising copolymer of aniline and m-aminophenol: chemical preparation, novel electric properties and characterization. Polymer 48, 1269–1275 (2007)

    Article  Google Scholar 

  14. U.S. Waware, M. Rashid, A.M.S. Hamouda, Thermal stability and frequency-dependent electrical conductivity of poly(aniline-co-m-nitroaniline). Ionics 25, 2669–2676 (2019)

    Article  Google Scholar 

  15. M. Yang, K. Cao, L. Sui, Q. Ying, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5(9), 6945 (2011)

    Article  Google Scholar 

  16. P. Saini, E. Ali, J. Parvaneh, Polymerization of aniline through simultaneous chemical and electrochemical routes. Polym. J. 38(7), 651–658 (2006)

    Article  Google Scholar 

  17. L. Meiling, Y. Min, Y. Qin, Z. Youyu, X. Qingji, Y. Shouzhuo, New method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemistry. Electrochim. Acta. 52, 342–352 (2006)

    Article  Google Scholar 

  18. U.S. Waware, A.M.S. Hamouda, M. Rashid, G.J. Summers, The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci. Mater. Electron. 28, 15178 (2017)

    Article  Google Scholar 

  19. A. Haq, A. Shah, H. Rudolf, Spectroelectrochemistry of aniline-o-aminophenol copolymers. Electrochim. Acta. 52, 1374–1382 (2006)

    Article  Google Scholar 

  20. Y. Zhang, L. Qin, S. Li, Z. Jianping, The electrocatalytic reduction and removal of arsenate by poly(aniline-co-o-aminophenol). J. Electroanal. Chem. 636, 47–52 (2009)

    Article  Google Scholar 

  21. Y.H. Xiu, L.X. Qing, D. Maa, L. Zhong, K. Yong, X. Huai-Guo, One-step synthesis of MnO2 doped poly(aniline-co-o-aminophenol)and the capacitive behaviors of the conducting copolymer. Chin. Chem. Lett. 26, 1367–1370 (2015)

    Article  Google Scholar 

  22. U.S. Waware, G.J. Summers, M. Rashid, A.M.S. Hamouda, Electrochemical, morphological, and spectroscopic study of poly(aniline-co-o-bromoaniline) (PA-co-o-BrA) conducting copolymer. Ionics 24, 1701–1708 (2018)

    Article  Google Scholar 

  23. E.T. Kang, K.G. Neoh, K.L. Tan, ESCA studies of protonation in polyaniline. Polym. J. 21, 873–881 (1989)

    Article  Google Scholar 

  24. P. Saini, R. Jalan, S.K. Dhawan, Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA. J. Appl. Polym. Sci. 108, 1437 (2008)

    Article  Google Scholar 

  25. A.G. MacDiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)

    Article  Google Scholar 

  26. K. Tzou, R.V. Gregory, A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth. Met. 53, 365 (1993)

    Article  Google Scholar 

  27. R.M. Silverstein, F.X. Webster, D.J. Kiemle, Identification of Organic Compounds, vol. 88, 7th edn. (Wiley, New York, 2005)

    Google Scholar 

  28. V.G. Kulkarni, L.D. Cambell, W.R. Mathew, Thermal stability of polyaniline. Synth. Met. 30, 321 (1989)

    Article  Google Scholar 

  29. J.A. Conklin, S.C. Huang, S.M. Huang, T. Wen, R.B. Kaner, Thermal properties of polyaniline and poly(aniline-co-o-ethylaniline). Macromolecules 28, 6522–6527 (1995)

    Article  ADS  Google Scholar 

  30. B. Wunderlich, Thermal Analysis. Academic Press 2, 417–431 (1990)

    Google Scholar 

  31. D.-M. Fann, S.K. Huang, J.-Y. Lee, DSC studies on the crystallization characteristics of poly(ethylene terephthalate) for blow molding applications. Polym. Eng. Sci. 38(2), 265–273 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We are highly grateful to the Qatar University, Doha and University Sains Malaysia, Penang, Malaysia, for financial assistance and funding the research work. We are also thankful to Central Lab Unit (CLU) and Centre for Advance Materials (CAM) of the University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh S. Waware or Mohd Rashid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Rashid, M. & Hamouda, A.M.S. Poly(aniline-co-3-aminophenol): enhanced crystallinity and solubility. Appl. Phys. A 125, 846 (2019). https://doi.org/10.1007/s00339-019-3061-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3061-3

Navigation