Skip to main content
Log in

Highly crystalline and thermally stable poly(aniline-co-2-nitroaniline)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To synthesize a crystalline polymer is unconventional. Here, we found the well-defined hexagonal or rectangular cubical shape of poly(aniline-co-2-nitroaniline)s PA-co-2-NAs through scanning electron microscopy. Enhanced crystallinity of PA-co-2-NAs has been confirmed by differential scanning calorimetry and particle size analysis. The edge and structural morphology of the material has been studied by SEM and TEM analysis. The physical nature of –NO2 groups and the bandgap between HOMO and LUMO of the copolymer have been evaluated by FTIR and UV–vis spectroscopy, respectively. The overall reduced particle size of A-co-2-NA supports the improved percentage of the crystallinity of the material. The spatial resolutions at nano-level examined through (TEM) also confirm the sharp edges of the material. The diminished electrical conductivity of the copolymer is determined by applying the four-probe method.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee K et al (2006) Metallic transport in polyaniline. Nature 441:65–68

    Article  CAS  Google Scholar 

  2. Su WP, Epstein AJ (1993) Optical and magnetic signatures of localized excitationsin pernigraniline: role of neutral solitons A. J Phys Rev Lett 70:3359

    Article  CAS  Google Scholar 

  3. Chiou NR, Lui CM, Guan JJ, Lee LJ, Epstein AJ (2007) Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat Nanotechnol 2:354–357

    Article  CAS  Google Scholar 

  4. Zhang JT, Zhao ZH, Xia ZH, Dai LM (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452

    Article  CAS  Google Scholar 

  5. Chiang J, Macdiarmid AG (1986) Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193

    Article  CAS  Google Scholar 

  6. Bai S, Zhao Y, Sun J, Tian Y, Luo R, Li D, Chen A (2005) Ultrasensitive room temperature NH3 sensor based on graphene-polyaniline hybrid loading on PET thin film. Chen Chem Commun 51:7524

    Article  Google Scholar 

  7. Zhang Tao et al (2019) Engineering crystalline quasi-two-dimensionalpolyaniline thinfilm with enhanced electrical andchemiresistive sensing performances. Nat Commun 10:4

    Article  Google Scholar 

  8. Deb K, Bera A, Saha B (2016) Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv 6:94795

    Article  CAS  Google Scholar 

  9. Liu K, Qi H, Dong R et al (2019) On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat Chem 11:994–1000

    Article  CAS  Google Scholar 

  10. La Y, Song J, Jeong MG, Cho A, Jin S-M, Lee E, Kim KT (2018) Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nat Commun 9:1–9

    Article  CAS  Google Scholar 

  11. Waware US, Rashid M, Hamouda AMS (2019) Thermal stability and frequency-dependent electrical conductivity of poly(aniline-co-m-nitroaniline). Ionics 25:2669–2676

    Article  CAS  Google Scholar 

  12. Yahya A, Mohammad F, Ahmad AJ (2011) Synthesis, electrical conductivity, spectral and thermal stability studies on poly(aniline-co-o-nitroaniline) macromole. Sci Part A Pure App Chem 48:952

    Google Scholar 

  13. Joseph N, Varghese J, Sebastian MT (2015) Self assembled polyaniline nanofibers withenhanced electromagnetic shielding properties. RSC Adv 5:20459

    Article  CAS  Google Scholar 

  14. Dakshayini BS, Reddy KR, Mishr A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV (2019) Role of conducting polymer and metal oxide-based hybrids for applications inampereometric sensors and biosensors. Microchem J 147:7–24

    Article  CAS  Google Scholar 

  15. Wang L, Sahabudeen H, Zhang T, Dong R (2018) Liquid-interface-assisted synthesis of covalent-organic andmetal-organic two-dimensional crystalline polymers NPJ. 2D Mater Appl 2:1–7

    Article  Google Scholar 

  16. Wang L, Wu T, Du S, Pei M, Guo W, Wei S (2016) High performance supercapacitors based onternary graphene/Au/polyaniline (PANI)hierarchical nanocomposites. RSC Adv 6:1

    Article  Google Scholar 

  17. Wang H, Linc J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Matter Dev 1:225

    Google Scholar 

  18. Kim S-H, Umar A, Kumar R, Algarni H (2016) Fabrication of Nitroaniline chemical Sensors based on polyaniline. Nanosci Nanotechnol Lett 8(3):193–199

    Article  Google Scholar 

  19. Waware US, Rashid M, Hamouda AMS (2019) Highly improved AC conductivity of poly(aniline-o-fluoroaniline). Ionics 25:1057–1065

    Article  CAS  Google Scholar 

  20. Waware US, Hamouda AMS, Rashid M, Kasak P (2018) Binding energy, structural, and dielectric properties of thin film of poly(aniline-co-m-fluoroaniline). Ionics 24:3249–3257

    Article  CAS  Google Scholar 

  21. Gopinath J, Balasubramanyam RKC, Santosh V, Swami SK, Kumar DK, Gupta SK, Dutta V, Reddy KR, Sadhu V, SeshaSainath AV, Aminabhavi TM (2019) Novel anisotropic ordered polymeric materials based on metallopolymer precursors as dye sensitized solar cells. Chem Eng J 358:1166–1175

    Article  CAS  Google Scholar 

  22. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  23. Reddy KR, Karthik KV, BenakaPrasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    Article  CAS  Google Scholar 

  24. Savitha P, Sathyanarayana DN (2005) Donor–acceptor-based poly(toluidine-co-chloroaniline)s: synthesis and characterization. J Polym Sci Part A Polym Chem 43:1579–1587

    Article  CAS  Google Scholar 

  25. Sato M, Yamanaka S, Nakaya JI, Hyodo K (1994) Electrochemical copolymerization of aniline with o-aminobenzonitrile. Electrochim Acta 39:2159

    Article  CAS  Google Scholar 

  26. Lee J, Cui CQ (1996) Electrochemical copolymerization of aniline and metanilic acid. J Electroanal Chem 403:109

    Article  Google Scholar 

  27. Ding L, Li Q, Zhou D, Cui H, Tang R, Zhai J (2012) Copolymerization of aniline with m-nitroaniline and removal of m-nitroaniline from aqueous solutions using a polyaniline-modified electrode: a comparative study. J Electrochimica Acta. 77:302

    Article  CAS  Google Scholar 

  28. Tzou K, Gregory RV (1993) A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth Met 53:365

    Article  CAS  Google Scholar 

  29. Lee MH, Speyer G, Sanskey F (2007) Theory of electron transport through single molecules of polyaniline. J Phy-Cond Matter. 19:215204

    Article  Google Scholar 

  30. Kim YH, Foster C, Chiang J, Heeger AJ (1989) Localized charged excitations in polyaniline: infrared phqtqexcitatiqn and protonation studies. Synth Met 29:285

    Article  Google Scholar 

  31. Aysegu G, SariB B, Talu M (2005) Polymers, Composites, and Characterization of Conducting Polyfuran and Poly(2-bromoaniline). J Appl Poly Sci. 98:2048

    Article  Google Scholar 

  32. Karyakin AA, Strakhova AK, Yatsimirsdky AK (1994) Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions: electropolymerization of substituted anilines. J Electroana Chem 371:259

    Article  CAS  Google Scholar 

  33. Kovalchuka EP, Whittingham S, Skolozdra OM, Zavalij PY, Zavaliy IY, Reshetnyak OV, Błazejowski J (2001) Copolymers of aniline and nitroanilines: part II Physicochemical properties. Materials Chemistry and Physics 70:38–48

    Article  Google Scholar 

  34. Rao PS, Sathyanarayana DN, Palaniappan S (2002) Polymerization of aniline in an organic peroxide system by the inverted emulsion process. Macromole 35:4988

    Article  CAS  Google Scholar 

  35. Ding L, Wang X, Gregory RV (1999) Thermal properties of chemically synthesized polyaniline (EB) powder. Synth Met 104:73

    Article  CAS  Google Scholar 

  36. Fann Daw-Ming, Huang Steve K, Lee Jiunn-Yih (1998) DSC studies on the crystallization characteristics of poly(ethy1ene terephthalate) for blow molding applications. Polym Eng Sci 38:265–273

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the University Sains Malaysia, and the Qatar University, Doha, for the research facilities and financial assistance. We also acknowledge the CLU and CAM of QU for providing the facilities to carry out the characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Umesh S. Waware or Mohd Rashid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waware, U.S., Rashid, M., Hamouda, A.M.S. et al. Highly crystalline and thermally stable poly(aniline-co-2-nitroaniline). Polym. Bull. 78, 1407–1421 (2021). https://doi.org/10.1007/s00289-020-03153-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03153-z

Keywords

Navigation