Skip to main content
Log in

Electronic and transport characteristics of vacancy and nitrogen-doped graphene nanoribbon rotational switch

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of nitrogen (N) doping and single vacancy defect is investigated on the electromechanical properties of twisted armchair graphene nanoribbon (TAGNR). Five different twist angles were investigated for the perfect model, N doping and single vacancy defect which are located in three different positions and in three different widths of AGNR. In general, 105 models were produced with this specification. The results show that among the above models, eight devices with suitable switching behavior can be selected as the first graphene-based nanoribbon rotational switch (GRS) with defect and doping. The combination of density function theory (DFT) and the non-equilibrium Green's function methods were utilized in the computation. Having applied the twist, the bond length structure of the atoms, the charge density distribution, and transmission pathways vary leading to the different strain energies and change in the electronic behavior of the device. The change in the twist angle causes the maximum and minimum currents of the device able to increase or decrease in the value of these changes through creating defect and doping in the structure which, also, relies on the defect or doping and their position. Based on the above results, applying electromechanical changes therein can control the electronic properties of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.C. Chen et al., Molecular bandgap engineering of bottom-up synthe-sized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10(2), 156–160 (2015)

    Article  ADS  Google Scholar 

  2. H. He, Y. Zhang, B. Pan, Tuning electronic structure of graphene via tailoring structure: theoretical study. J. Appl. Phys. 107(11), 114322 (2010)

    Article  ADS  Google Scholar 

  3. M. Kumar, N.K. Puri, N. Tyagi, P. Srivastava, Band gap engineering of armchair graphene nanoribbons via Mn/Cr termination. J. Comput. Theor. Nanosci. 14(5), 2401–2404 (2017)

    Article  Google Scholar 

  4. L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3(7), 397–401 (2008)

    Article  Google Scholar 

  5. S. Fujii, T. Enoki, Cutting of oxidized graphene into nanosized pieces. J. Am. Chem. Soc. 132(29), 10034–10041 (2010)

    Article  Google Scholar 

  6. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90, 75–127 (2017)

    Article  Google Scholar 

  7. K.T. Lam, C. Lee, G. Liang, Bilayer graphene nanoribbon nanoelectromechanical system device: acomputational study. Appl. Phys. Lett. 95(14), 143107 (2009)

    Article  ADS  Google Scholar 

  8. J. Zeng, K.Q. Chen, J. He, X.J. Zhang, W.P. Hu, Rectifying and successive switch behaviors induced by weak in-termolecular interaction. Org. Electron. 12(10), 1606–1611 (2011)

    Article  Google Scholar 

  9. J. Zheng, P. Guo, Z. Ren, Z. Jiang, J. Bai, Z. Zhang, Conductance fluctuations as a function of sliding motion in bi-layer graphene nanoribbon junction: afirst-principles investigation. Appl. Phys. Lett. 101(8), 083101 (2012)

    Article  ADS  Google Scholar 

  10. S. Smith, J.P. Llinás, J. Bokor, S. Salahuddin, Negative Differential Resistance and Steep Switching in Chevron Graphene Nanoribbon Field-Effect Transistors. IEEE Electron Device Lett 39, 143–146 (2018)

    Article  ADS  Google Scholar 

  11. Y. Song, Y. Liu, X. Feng, F. Yan, W. Zhang, Spin-selectable, region-tunable negative differential resistance in graphene double ferromagnetic barriers. Physical Chemistry Chemical Physics 20(3), 1560–1567 (2018)

    Article  Google Scholar 

  12. Y. Li, Ma. Zhiyuan, S. Xianjiang, Y. Zhi, L. C. Xu, Liu, R., X. Li, X. Liu, D. Hu, The magnetoresistance effect and spin-polarized photocurrent of zigzag graphene-graphyne nanoribbon heterojunctions. Comput. Mater. Sci., 136:1–11 (2017).

    Article  Google Scholar 

  13. A.A. Fouladi, Effect of uniaxial strain on the tunnel magnetoresistance of T-shaped graphene nanoribbon based spin-valve. Superlattices Microstruct 95, 108–114 (2016)

    Article  ADS  Google Scholar 

  14. H. Huang, A. Zheng, G. Gao, K. Yao, Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron. J Magn Magn Mater 449, 522–529 (2018)

    Article  ADS  Google Scholar 

  15. M. Magno, F. Hagelberg, Strained zigzag graphene nanoribbon devices with vacancies as perfect spin filters. J Mol Model 24, 35 (2018)

    Article  Google Scholar 

  16. H. Li, N. Al-Aqtash, L. Wang, R. Qin, Q. Liu, J. Zheng, W.N. Mei, R.F. Sabirianov, Z. Gao, J. Lu, Electromechanical switch in metallic graphene nanoribbons via twisting. Physica E 44(10), 2021–2026 (2012)

    Article  ADS  Google Scholar 

  17. X.T. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo-Herrera et al., Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323, 1701–1705 (2009)

    Article  ADS  Google Scholar 

  18. S. Blankenburg, J.M. Cai, P. Ruffieux, R. Jaafar, D. Passerone, X.L. Feng et al., Intraribbon heterojunction formation in ultranarrow graphene nanoribbons. ACS Nano 6, 2020–2025 (2012)

    Article  Google Scholar 

  19. R. Chowdhury, Conductance of graphene nanoribbons under mechanical deformation. Physica E 44, 1256–1259 (2012)

    Article  ADS  Google Scholar 

  20. J. Jia, D. Shi, X. Feng, G. Chen, Electromechanical properties of armchair graphene nanoribbons under local torsion. Carbon 76, 54–63 (2014)

    Article  Google Scholar 

  21. V. B. Shenoy, C. D. Reddy, A. Ramasubramaniam, Y.W. Zhang, “Edge-stress-induced warping of graphene sheets and nanoribbons”. Phys Rev Lett 2008; 101:245501–1–4

  22. D. Gunlycke, J. Li, J.W. Mintmire, C.T. White, Edges bring new dimension to graphene nanoribbons. Nano Lett 10, 3638–3642 (2010)

    Article  ADS  Google Scholar 

  23. Y. Li, Twist-enhanced stretch ability of graphene nanoribbons: a molecular dynamics study. J Phys D 43, 495405–1–495408 (2010)

    Google Scholar 

  24. A. Sadrzadeh, M. Hua, B.I. Yakobson, Electronic properties of twisted armchair graphene nanoribbons. Appl Phys Lett 99, 013102–1–13103 (2011)

    Article  Google Scholar 

  25. P. Koskinen, Electromechanics of twisted graphene nanoribbons. Appl Phys Lett 99, 013105–1–13113 (2011)

    Article  Google Scholar 

  26. D.B. Zhang, T. Dumitric, Role of effective tensile strain in electromechanical response of helical graphene nanoribbons with open and closed armchair Edges. Phys Rev B 85, 035445–1–35455 (2012)

    Google Scholar 

  27. X. Liu, F. Wang, H. Wu, Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Physical Chemistry Chemical Physics 17(47), 31911–31916 (2015)

    Article  Google Scholar 

  28. D.B. Zhang, G. Seifert, K. Chang, Strain-induced pseudomagnetic fields in twisted graphene nanoribbons. Phys Rev Lett 112(9), 096805 (2014)

    Article  ADS  Google Scholar 

  29. H. Fang, R.Z. Wang, S.Y. Chen, M. Yan, X.M. Song, B. Wang, Strain-induced negative differential resistance in armchair-edge graphene nanoribbons. Appl Phys Lett 98(8), 082108 (2011)

    Article  ADS  Google Scholar 

  30. S. Cranford, M.J. Buehler, Twisted and coiled ultralong multilayer graphene ribbon. Modell Simul Mater Sci Eng 19(5), 054003 (2011)

    Article  ADS  Google Scholar 

  31. A. Antidormi, M. Royo, R. Rurali, Electron and phonon transport in twisted graphene nanoribbons. J Phys D Appl Phys 50(23), 234005 (2017)

    Article  ADS  Google Scholar 

  32. D. Xia, Q. Li, Q. Xue, C. Liang, M. Dong, Super flexibility and stability of graphene nanoribbons under severe twist. Physical Chemistry Chemical Physics 18(27), 18406–18413 (2016)

    Article  Google Scholar 

  33. S.Y. Yue, Q.B. Yan, Z.G. Zhu, H.J. Cui, Q.R. Zheng, G. Su, First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips. Carbon 71, 150–158 (2014)

    Article  Google Scholar 

  34. S. Souma, S. Kaino, and M. Ogawa. “Tight-binding molecular dynamics study of mechanical and electronic properties in twisted graphene nanoribbons”. In Proc. of SISPAD. (2012).

  35. K.V. Bets, B.I. Yakobson, Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Research 2(2), 161–166 (2009)

    Article  Google Scholar 

  36. E. Moraes Diniz, “Self-reconstruction and predictability of bonds disruption in twisted graphene nanoribbons”. Applied Physics Letters 104, no. 8 (2014) 083119.

    Article  ADS  Google Scholar 

  37. T.W. Chamberlain, J. Biskupek, A.G. Rance, A. Chuvilin, T.J. Alexander, E. Bichoutskaia, U. Kaiser, A.N. Khlobystov, Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano 6(5), 3943–3953 (2012)

    Article  Google Scholar 

  38. A. L. Elías, A. R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz-Sandoval, P. M. Ajayan, H. Terrones, and M. Terrones, “Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels”. Nano letters, 10(2) (2009) 366–372.

  39. J. Park, W. C. Mitchel, S. Elhamri, L. Grazulis, J. Hoelscher, K. Mahalingam, C. Hwang, S. K. Mo, and J. Lee, “Observation of the intrinsic bandgap behaviour in as-grown epitaxial twisted grapheme”, Nature communications, Vol.6(25) (2015) 5677.

  40. O.O. Kit, T. Tallinen, L. Mahadevan, J. Timonen, P. Koskinen, Twisting graphene nanoribbons into carbon nanotubes. Physical Review B 85(8), 085428 (2012)

    Article  ADS  Google Scholar 

  41. N. Al-Aqtash, H. Li, L. Wang, W.N. Mei, R.F. Sabirianov, Electromechanical switching in graphene nanoribbons. Carbon 51(9), 102–109 (2013)

    Article  Google Scholar 

  42. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev Mod Phys 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  43. A.K. Geim, K.S. Novoselov, The rise of graphene (A Collection of Reviews from Nature Journals, In Nanoscience and Technology, 2010), pp. 11–19

    Google Scholar 

  44. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)

    Article  ADS  Google Scholar 

  45. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8(11), 3582–3586 (2008)

    Article  ADS  Google Scholar 

  46. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)

    Article  ADS  Google Scholar 

  47. M. Golzani, S. Haji-Nasiri, The Effect of Line-Edge Roughness on Electronic Transport Characteristics of a Graphene Nanoribbon Rectifier. J Electron Mater 47(10), 6067–6077 (2018)

    Article  ADS  Google Scholar 

  48. L. Vicarelli, S.J. Heerema, C. Dekker, H.W. Zandbergen, Controlling defects in graphene for optimizing the electrical properties of graphene nanodevices. ACS Nano 9(4), 3428–3435 (2015)

    Article  Google Scholar 

  49. J. Kotakoski, A.V. Krasheninnikov, U. Kaiser, J.C. Meyer, From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106(10), 105505 (2011)

    Article  ADS  Google Scholar 

  50. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5), 1752–1758 (2009)

    Article  ADS  Google Scholar 

  51. B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett 10(12), 4975–4980 (2010)

    Article  ADS  Google Scholar 

  52. G.P. Tang, J.C. Zhou, Z.H. Zhang, X.Q. Deng, Z.Q. Fan, Altering regularities of electronic transport properties in twisted graphene nanoribbons. Appl Phys Lett 101(2), 023104 (2012)

    Article  ADS  Google Scholar 

  53. Atomistix ToolKit version 2016.4, QuantumWise A/S (www.quantumwise.com).

  54. Z. Ning, “First Principles Quantitative Modeling of Molecular Devices,” Ph.D. Dissertation, McGill University, Montr´eal, Qu´ebec, Canada, (2010).

  55. S. Datta, Quantum Transport: Atom to transistor, 2nd edn. (Cambridge University Press, Cambridge, MA, 2005)

    Book  Google Scholar 

  56. Q. Lu, R. Huang, excess energy and deformation along free edges of graphene nanoribbons. Physical Review B 81(15), 155410 (2010)

    Article  ADS  Google Scholar 

  57. H. Wan, B. Zhou, X. Chen, C.Q. Sun, and G. Zhou, 2012. Switching, dual spin-filtering effects, and negative differential resistance in a carbon-based molecular device. The Journal of Physical Chemistry C, 116(3) (2012) pp.2570–2574.

    Article  Google Scholar 

  58. Z.Q. Fan, Z.H. Zhang, X.Q. Deng, G.P. Tang, C.H. Yang, L. Sun, H.L. Zhu, Effect of electrode twisting on electronic transport properties of atomic carbon wires. Carbon 98, 179–186 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Haji-Nasiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poliki, M., Haji-Nasiri, S. Electronic and transport characteristics of vacancy and nitrogen-doped graphene nanoribbon rotational switch. Appl. Phys. A 125, 658 (2019). https://doi.org/10.1007/s00339-019-2961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2961-6

Navigation