Skip to main content
Log in

A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a simple model was proposed using finite element analysis (FEA) with a commercial FEA software ABAQUS to simulate the two-dimensional (2-D) laser heat transfer in an aluminum material. Without relying on the conventional hydrodynamic model, the proposed model not only predicts the evolutions of the temperature field and ablation profiles in the target material, but also provides an estimation on the evolutions of electron density, plasma temperature, and plasma absorption coefficient. The assumptions used in the model include the local thermal equilibrium and additional assumptions regarding the average plasma temperature and vapor density. The assumptions allowed the laser heat transfer equation to be solved together with the Saha–Eggert equation and conservation equations of matter and charge. When compared to the existing hydrodynamic models, the proposed model solves a less number of nonlinear equations and hence is computationally more efficient. The proposed FE model was employed to study the plasma-shielding effect on PLA produced by a 193 nm Excimer laser and a 266 nm Nd:YAG laser. The predictions of ablation depths, electron density, and plasma temperature agree well with the experimental data. Moreover, effects of the laser intensity and the average plasma temperature on the efficiency of the plasma shielding during PLA were also investigated and discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Ding, Y.C. Shin, Laser-assisted machining of hardened steel parts with surface integrity analysis. Int J Mach Tools Manuf 50(1), 106–114 (2010)

    Article  Google Scholar 

  2. A.M. Morales, C.M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348), 208–211 (1998)

    Article  ADS  Google Scholar 

  3. P. Parandoush, L. Tucker, C. Zhou, D. Lin, Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater Des 131, 186–195 (2017)

    Article  Google Scholar 

  4. N. Shen, H. Ding, Q. Wang, H. Ding, Effect of confinement on surface modification for laser peen forming without protective coating. Surf Coat Technol 289, 194–205 (2016)

    Article  Google Scholar 

  5. J. Liu, S. Suslov, Z. Ren, Y. Dong, C. Ye, Microstructure evolution in Ti64 subjected to laser-assisted ultrasonic nanocrystal surface modification. Int J Mach Tools Manuf 136, 19–33 (2019)

    Article  Google Scholar 

  6. M.N.R. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Pulsed laser ablation and deposition of thin films. Chem Soc Rev 33(1), 23–31 (2004)

    Article  Google Scholar 

  7. L.M. Shanyfelt, P.L. Dickrell, H.F. Edelhauser, D.W. Hahn, Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light. Lasers Surg Med 40(7), 483–493 (2008)

    Article  Google Scholar 

  8. D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issues within the analytical plasma community. Appl Spectrosc 64(12), 335A–366A (2010)

    Article  ADS  Google Scholar 

  9. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. Appl Phys A Mater Sci Process 73(2), 199–208 (2001)

    Article  ADS  Google Scholar 

  10. G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, P.A. Benedetti, Observation of different mass removal regimes during the laser ablation of an aluminium target in air. J Anal At Spectrom 23(11), 1518–1528 (2008)

    Article  Google Scholar 

  11. C. Porneala, D.A. Willis, Observation of nanosecond laser-induced phase explosion in aluminum. Appl Phys Lett 89(21), 211121 (2006)

    Article  ADS  Google Scholar 

  12. J.M. Fishburn, R.P. Mildren, D. Kapitan, M.J. Withford, D.J.W. Brown, J.A. Piper, Exploring the explosive ablation regime of metals in nanosecond micromachining, in: Proceeding of the SPIE 3885, High-Power Laser Ablation II, (2000) pp. 453–460.

  13. Y. Wang, D. Diaz, D.W. Hahn, Ablation characteristics of nanosecond laser pulsed ablation of aluminum, in: ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, 2018, pp. V002T002A086–V002T002A086.

  14. X. Zhao, Y.C. Shin, Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl Phys B 120(1), 81–87 (2015)

    Article  ADS  Google Scholar 

  15. X. Zeng, X. Mao, S.S. Mao, S.-B. Wen, R. Greif, R.E. Russo, Laser-induced shockwave propagation from ablation in a cavity. Appl Phys Lett 88(6), 061502 (2006)

    Article  ADS  Google Scholar 

  16. J.C. Miller, R.F. Haglund, Laser ablation and desorption (Academic Press, London, 1998)

    Google Scholar 

  17. A.E. Hussein, P.K. Diwakar, S.S. Harilal, A. Hassanein, The role of laser wavelength on plasma generation and expansion of ablation plumes in air. J Appl Phys 113(14), 143305 (2013)

    Article  ADS  Google Scholar 

  18. X. Zeng, X.L. Mao, R. Greif, R.E. Russo, Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon. Appl Phys A 80(2), 237–241 (2005)

    Article  ADS  Google Scholar 

  19. M.S. Dawood, A. Hamdan, J. Margot, Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas. AIP Adv 5(10), 107143 (2015)

    Article  ADS  Google Scholar 

  20. S. Eschlböck-Fuchs, A. Demidov, I.B. Gornushkin, T. Schmid, R. Rössler, N. Huber, U. Panne, J.D. Pedarnig, Tomography of homogenized laser-induced plasma by Radon transform technique. Spectrochim Acta Part B 123, 59–67 (2016)

    Article  ADS  Google Scholar 

  21. S. Nammi, N.J. Vasa, B. Gurusamy, A.C. Mathur, Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films. J Phys D Appl Phys 50(35), 355204 (2017)

    Article  Google Scholar 

  22. M. Ribière, B.G. Chéron, Analysis of relaxing laser-induced plasmas by absorption spectroscopy: Toward a new quantitative diagnostic technique. Spectrochim Acta Part B 65(7), 524–532 (2010)

    Article  ADS  Google Scholar 

  23. O. Barthélemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T.W. Johnston, S. Laville, B. Le Drogoff, Influence of the laser parameters on the space and time characteristics of an aluminum laser-induced plasma. Spectrochim Acta Part B 60(7–8), 905–914 (2005)

    Article  ADS  Google Scholar 

  24. A. Gragossian, S.H. Tavassoli, B. Shokri, Laser ablation of aluminum from normal evaporation to phase explosion. J Appl Phys 105(10), 103304 (2009)

    Article  ADS  Google Scholar 

  25. V. Oliveira, R. Vilar, Finite element simulation of pulsed laser ablation of titanium carbide. Appl Surf Sci 253(19), 7810–7814 (2007)

    Article  ADS  Google Scholar 

  26. N.A. Vasantgadkar, U.V. Bhandarkar, S.S. Joshi, A finite element model to predict the ablation depth in pulsed laser ablation. Thin Solid Films 519(4), 1421–1430 (2010)

    Article  ADS  Google Scholar 

  27. Y. Wang, N. Shen, G.K. Befekadu, C.L. Pasiliao, Modeling pulsed laser ablation of aluminum with finite element analysis considering material moving front. Int J Heat Mass Transf 113, 1246–1253 (2017)

    Article  Google Scholar 

  28. B. Kim, R. Iida, D.H. Doan, K. Fushinobu, Nanosecond pulse laser scribing using Bessel beam for single shot removal of transparent conductive oxide thin film. Int J Heat Mass Transf 107, 829–835 (2017)

    Article  Google Scholar 

  29. Y. Cao, X. Zhao, Y.C. Shin, Analysis of nanosecond laser ablation of aluminum with and without phase explosion in air and water. J Laser Appl 25(3), 032002 (2013)

    Article  Google Scholar 

  30. T. Moscicki, J. Hoffman, Z. Szymanski, Laser ablation in an ambient gas: modelling and experiment. J Appl Phys 123(8), 083305 (2018)

    Article  ADS  Google Scholar 

  31. Y. Zhang, D. Zhang, J. Wu, Z. He, X. Deng, A thermal model for nanosecond pulsed laser ablation of aluminum. AIP Adv 7(7), 075010 (2017)

    Article  ADS  Google Scholar 

  32. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Laser ablation for analytical sampling: what can we learn from modeling? Spectrochim Acta Part B 58(11), 1867–1893 (2003)

    Article  ADS  Google Scholar 

  33. J.K. Antony, G.S. Jatana, N.J. Vasa, V.L.N.S. Raja, A.S. Laxmiprasad, Modeling of laser induced breakdown spectroscopy for very low-pressure conditions. Appl Phys A 101(1), 161–165 (2010)

    Article  ADS  Google Scholar 

  34. S. Tao, Y. Zhou, B. Wu, Y. Gao, Infrared long nanosecond laser pulse ablation of silicon: Integrated two-dimensional modeling and time-resolved experimental study. Appl Surf Sci 258(19), 7766–7773 (2012)

    Article  ADS  Google Scholar 

  35. A.V. Gusarov, I. Smurov, Near-surface laser–vapour coupling in nanosecond pulsed laser ablation. J Phys D Appl Phys 36(23), 2962 (2003)

    Article  ADS  Google Scholar 

  36. A.V. Bulgakov, N.M. Bulgakova, Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma. Quantum Electron 29(5), 433 (1999)

    Article  ADS  Google Scholar 

  37. N.M. Bulgakova, A.V. Bulgakov, L.P. Babich, Energy balance of pulsed laser ablation: thermal model revised. Appl Phys A 79(4–6), 1323–1326 (2004)

    Article  ADS  Google Scholar 

  38. D.A. Willis, X. Xu, Heat transfer and phase change during picosecond laser ablation of nickel. Int J Heat Mass Transf 45(19), 3911–3918 (2002)

    Article  Google Scholar 

  39. V. Morel, A. Bultel, B.G. Chéron, The critical temperature of aluminum. Int J Thermophys 30(6), 1853–1863 (2009)

    Article  ADS  Google Scholar 

  40. J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo, Explosive change in crater properties during high power nanosecond laser ablation of silicon. J Appl Phys 88(3), 1638–1649 (2000)

    Article  ADS  Google Scholar 

  41. X. Jia, X. Zhao, Numerical study of material decomposition in ultrafast laser interaction with metals. Appl Surf Sci 463, 781–790 (2019)

    Article  ADS  Google Scholar 

  42. Y. Cao, Ablation and plasma effects during nanosecond laser matter interaction in air and water. PhD Thesis, Purdue University, 2015.

  43. Y. Wang, G.K. Befekadu, H. Ding, D.W. Hahn, Uncertainty quantification for modeling pulsed laser ablation of aluminum considering uncertainty in the temperature-dependent absorption coefficient. Int J Heat Mass Transf 120, 515–522 (2018)

    Article  Google Scholar 

  44. S. Ghalamdaran, P. Parvin, M.J. Torkamany, J.S. Zadeh, Two-dimensional simulation of laser ablation with 235 nanosecond pulses. J Laser Appl 26(1), 012009 (2014)

    Article  Google Scholar 

  45. T. Sakai, Impulse generation on aluminum target irradiated with Nd: YAG laser pulse in ambient gas. J Propul Power 25(2), 406–414 (2009)

    Article  Google Scholar 

  46. Y.B. Zel’Dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publications Inc, New York, 2012)

    Google Scholar 

  47. Y. Wang, C.L. Pasiliao, Modeling ablation of laminated composites: a novel manual mesh moving finite element analysis procedure with ABAQUS. Int J Heat Mass Transf 116, 306–313 (2018)

    Article  Google Scholar 

  48. Y. Wang, O.I. Zhupanska, Modeling of thermal response and ablation in laminated glass fiber reinforced polymer matrix composites due to lightning strike. Appl Math Model 53, 118–131 (2018)

    Article  Google Scholar 

  49. Y. Wang, Multiphysics analysis of lightning strike damage in laminated carbon/glass fiber reinforced polymer matrix composite materials: A review of problem formulation and computational modeling. Compos A Appl Sci Manuf 101, 543–553 (2017)

    Article  Google Scholar 

  50. Y. Wang, O.I. Zhupanska, Lightning strike thermal damage model for glass fiber reinforced polymer matrix composites and its application to wind turbine blades. Compos Struct 132, 1182–1191 (2015)

    Article  Google Scholar 

  51. Y. Wang, T.K. Risch, C.L. Pasiliao, Modeling of Pyrolyzing ablation problem with ABAQUS: a one-dimensional test case. J Thermophys Heat Transfer 32(2), 544–546 (2017)

    Article  Google Scholar 

  52. B.-L. Chua, H.-J. Lee, D.-G. Ahn, Y. Wang, A study on activation algorithm of finite elements for three-dimensional transient heat transfer analysis of directed energy deposition process. Int J Precis Eng Manuf 20(5), 863–869 (2019)

    Article  Google Scholar 

  53. E. Assuncao, S. Williams, Effect of material properties on the laser welding mode limits. J Laser Appl 26(1), 012008 (2014)

    Article  Google Scholar 

  54. I. Horn, M. Guillong, D. Günther, Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles—implications for LA-ICP-MS. Appl Surf Sci 182(1), 91–102 (2001)

    Article  ADS  Google Scholar 

  55. G.M. Pound, Selected values of evaporation and condensation coefficients for simple substances. J Phys Chem Ref Data 1(1), 135–146 (1972)

    Article  ADS  Google Scholar 

  56. Q. Lu, S.S. Mao, X. Mao, R.E. Russo, Theory analysis of wavelength dependence of laser-induced phase explosion of silicon. J Appl Phys 104(8), 083301 (2008)

    Article  ADS  Google Scholar 

  57. A. Bogaerts, Z. Chen, Effect of laser parameters on laser ablation and laser-induced plasma formation: A numerical modeling investigation. Spectrochim Acta Part B 60(9–10), 1280–1307 (2005)

    Article  ADS  Google Scholar 

  58. X.L. Mao, A.C. Ciocan, O.V. Borisov, R.E. Russo, Laser ablation processes investigated using inductively coupled plasma–atomic emission spectroscopy (ICP–AES). Appl Surf Sci 127, 262–268 (1998)

    Article  ADS  Google Scholar 

  59. X. Mao, R.E. Russo, Invited paper—observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles. Appl Phys A 64(1), 1–6 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Y. Wang would like to acknowledge the support from the Bagley College of Engineering and the High-Performance Computing Collaboratory (HPC2) at Mississippi State University. Y. Wang also thanks many helpful discussions with Dr. Alexander V. Bulgakov (Kutateladze Institute of Thermophysics, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeqing Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hahn, D.W. A simple finite element model to study the effect of plasma plume expansion on the nanosecond pulsed laser ablation of aluminum. Appl. Phys. A 125, 654 (2019). https://doi.org/10.1007/s00339-019-2951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2951-8

Navigation