Skip to main content
Log in

Influence of synthesis route on structural, optical, and electrical properties of TiO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiO2 samples with two different morphology were synthesized via sol–gel and hydrothermal techniques. The effect of synthesis procedure on structural, morphological, optical, and electrical properties was studied. Rietveld analysis revealed that anatase phase having tetragonal structure dominates at room temperature. The presence of anatse phase of TiO2 was further confirmed by the analysis of various peaks obtained from the Raman spectra. The field-emission scanning electron microscopy (FESEM) and transmission electron microscopy micrographs depicted the formation of two different kinds of morphologies with average particle size ranging from 9.87 to 11.35 nm. The FESEM micrographs showed homogeneous particle distribution for sol–gel synthesized sample, whereas it depicted rod-like structure in the sample synthesized via hydrothermal technique. The X-ray photoelectron spectroscopy analysis clearly indicated the presence of appropriate chemical composition and valency states of Ti and O element in TiO2 samples. The optical bandgap was estimated from the UV–visible spectra and found to be in corroboration with the reported values. The conductivity spectra were analyzed using Jonscher power law. The values of activation energy suggested that the conduction mechanism is thermally activated. The conductivity isotherms were scaled through Ghosh scaling model. In the sol–gel synthesized sample, the conduction mechanism was found to be independent of temperature in the entire measured temperature range; however, the hydrothermally synthesized sample depicted that the conduction mechanism is temperature-dependent in the measured temperature range. This discrepancy was understood in terms of structural changes and charge trapping within the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.V. Wellia, Q.C. Xu, M.A. Sk, K.H. Lim, T.M. Lim, T.T.Y. Tan, Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Appl. Catal. A Gen. 401(1–2), 98–105 (2011)

    Article  Google Scholar 

  2. H. Sun, Y. Bai, H. Liu, W. Jin, N. Xu, G. Chen et al., Mechanism of nitrogen-concentration dependence on pH value: experimental and theoretical studies on nitrogen-doped TiO2. J. Phys. Chem. C 112(34), 13304–13309 (2008)

    Article  Google Scholar 

  3. J. Yu, X. Zhao, Q. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Mater. Chem. Phys. 69(1–3), 25–29 (2001)

    Article  Google Scholar 

  4. B. Sun, T. Shi, Z. Peng, W. Sheng, T. Jiang, G. Liao, Controlled fabrication of Sn/TiO2 nanorods for photoelectrochemical water splitting. Nanoscale Res. Lett. 8(1), 1 (2013)

    Article  ADS  Google Scholar 

  5. L.-S. Liao, C.-H. Li, L.-L. Jiang, P.-F. Fang, Z.-K. Wang, M. Li, Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells. Sol. RRL 2(11), 1800149 (2018)

    Article  Google Scholar 

  6. H. Tang, K. Prasad, R. Sanjines, F. Levy, TiO2 anatase thin-films as gas sensors. Sens. Actuators B Chem. 26, 71–75 (1995)

    Article  Google Scholar 

  7. D.P. MacWan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46(11), 3669–3686 (2011)

    Article  ADS  Google Scholar 

  8. V. Caratto, L. Setti, S. Campodonico, M.M. Carnasciali, R. Botter, M. Ferretti, Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J. Sol Gel Sci. Technol. 63(1), 16–22 (2012)

    Article  Google Scholar 

  9. M.I. Dar, A.K. Chandiran, M. Grätzel, M.K. Nazeeruddin, S.A. Shivashankar, Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J. Mater. Chem. A 2(6), 1662–1667 (2014)

    Article  Google Scholar 

  10. Y. Cheng, M. Zhang, G. Yao, L. Yang, J. Tao, Z. Gong et al., Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method. J. Alloys Compd. 662, 179–184 (2016). https://doi.org/10.1016/j.jallcom.2015.12.034

    Article  Google Scholar 

  11. A. Mamakhel, E.D. Bøjesen, P. Hald, B.B. Iversen, Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method. Cryst. Growth Des. 13(11), 4730–4734 (2013)

    Article  Google Scholar 

  12. A. Dey, S. De, A. De, S.K. De, Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9), 1277–1283 (2004)

    Article  ADS  Google Scholar 

  13. R.J. Konwar, R. Sharma, G. Kaur, A. Mahajan, M. Kaur, P. Negi, Morpho-structural and opto-electrical properties of chemically tuned nanostructured TiO2. Ceram. Int. 44(15), 18484–18490 (2018). https://doi.org/10.1016/j.ceramint.2018.07.068

    Article  Google Scholar 

  14. S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392(2), 338–344 (2001)

    Article  ADS  Google Scholar 

  15. Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today 68(1–3), 173–182 (2001)

    Article  Google Scholar 

  16. C. Giolli, F. Borgioli, A. Credi, Fabio A. Di, A. Fossati, M.M. Miranda et al., Characterization of TiO2 coatings prepared by a modified electric arc-physical vapour deposition system. Surf. Coat. Technol. 202(1), 13–22 (2007)

    Article  Google Scholar 

  17. G. Verma, A.K. Tripathi, M.M. Ahmad, M.K. Singh, R.K. Srivastava, A. Agarwal et al., Synthesis based structural and optical behavior of anatase TiO2 nanoparticles. Mater. Sci. Semicond. Process. 23, 136–143 (2014)

    Article  Google Scholar 

  18. A. Yuvapragasam, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, T.S. Senthil, S. Sundaram, Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells. J. Photochem. Photobiol. B Biol. (2015). https://doi.org/10.1016/j.jphotobiol.2015.04.017

    Article  Google Scholar 

  19. S.H. Song, X. Wang, P. Xiao, Effect of microstructural features on the electrical properties of TiO2. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 94(1), 40–47 (2002)

    Article  Google Scholar 

  20. D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G.I. Rusu, On the structure, morphology and electrical conductivities of titanium oxide thin films. Surf. Sci. 507–510, 468–472 (2002)

    Article  ADS  Google Scholar 

  21. R.G. Breckenridge, W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91(4), 793–802 (1953)

    Article  ADS  Google Scholar 

  22. B. Roling, C. Martiny, S. Murugavel, Ionic conduction in glass: new information on the interrelation between the “jonscher behavior” and the “nearly constant-loss behavior” from broadband conductivity spectra. Phys. Rev. Lett. 87(8), 85901-1–85901-2 (2001)

    Article  ADS  Google Scholar 

  23. A.K. Jonscher, The “universal” dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  24. S. Summerfield, Universal low-frequency behaviour in the a.c. hopping conductivity of disordered systems. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop 52(1), 9–22 (1985)

    ADS  Google Scholar 

  25. D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses. Phys. Rev. Lett. 82(18), 3653–3656 (1999)

    Article  ADS  Google Scholar 

  26. A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84(10), 2188–2190 (2000)

    Article  ADS  Google Scholar 

  27. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Electrical and optical properties of TiO2 anatase thin films electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994)

    Article  ADS  Google Scholar 

  28. I.A. Alhomoudi, G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film. Thin Solid Films 517(15), 4372–4378 (2009). https://doi.org/10.1016/j.tsf.2009.02.141

    Article  ADS  Google Scholar 

  29. C. Ashok, Rao K. Venkateswara, ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application. Superlattices Microstruct. 76, 46–54 (2014). https://doi.org/10.1016/j.spmi.2014.09.029

    Article  ADS  Google Scholar 

  30. M. Razavi, M.R. Rahimipour, R. Kaboli, Synthesis of TiC nanocomposite powder from impure TiO2 and carbon black by mechanically activated sintering. J. Alloys Compd. 460(1–2), 694–698 (2008)

    Article  Google Scholar 

  31. H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37(1), 33–38 (2005)

    Article  Google Scholar 

  32. F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 116(13), 7515–7519 (2012)

    Article  Google Scholar 

  33. Z. Yin, W.F. Zhang, Y.L. He, Q. Chen, M.S. Zhang, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 33(8), 912–916 (2002)

    Google Scholar 

  34. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5(9), 3601–3614 (2013)

    Article  ADS  Google Scholar 

  35. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep32355

    Article  Google Scholar 

  36. L.C. Lucas, G.N. Raikar, R. Connatser, J.L. Ong, J.C. Gregory, Spectroscopic characterization of passivated titanium in a physiologic solution. J. Mater. Sci. Mater. Med. 6(2), 113–119 (2004)

    Google Scholar 

  37. L.B. Xiong, J.L. Li, B. Yang, Y. Yu, Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J Nanomater. 2012, 831524 (2012). https://doi.org/10.1155/2012/831524

    Article  Google Scholar 

  38. V. Pawar, M. Kumar, P.A. Jha, S.K. Gupta, P.K. Jha, P. Singh, Cs/MAPbI3 composite formation and its influence on optical properties. J. Alloys Compd. 783, 935–942 (2019)

    Article  Google Scholar 

  39. M. Kumar, V. Pawar, P.A. Jha, S.K. Gupta, A.S.K. Sinha, P.K. Jha et al., Thermo-optical correlation for room temperature synthesis: cold-sintered lead halides. J. Mater. Sci. Mater. Electron. 30(6), 6071–6081 (2019)

    Article  Google Scholar 

  40. J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24(8), 1084–1088 (2012)

    Article  Google Scholar 

  41. K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20(7), 2900–2907 (2004)

    Article  Google Scholar 

  42. V. Pawar, P.K. Jha, S.K. Panda, P.A. Jha, P. Singh, Band-gap engineering in ZnO thin films: a combined experimental and theoretical study. Phys. Rev. Appl. 9(5), 54001 (2018). https://doi.org/10.1103/PhysRevApplied.9.054001

    Article  ADS  Google Scholar 

  43. P. Singh, R.K. Singh, Structural characterization, electrical and dielectric relaxations in Dy-doped zirconia. J. Alloys Compd. 549, 238–244 (2013). https://doi.org/10.1016/j.jallcom.2012.09.059

    Article  Google Scholar 

  44. S.R. Elliott, A.C. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)

    Article  ADS  Google Scholar 

  45. P. Singh, O. Parkash, D. Kumar, Scaling of low-temperature conductivity spectra of BaSn1– xNbxO3 (x ≤ 0 100): temperature and compositional-independent conductivity. Phys. Rev. B. 84(17), 174306 (2011). https://doi.org/10.1103/PhysRevB.84.174306

    Article  ADS  Google Scholar 

  46. N.K. Singh, P. Singh, M.K. Singh, D. Kumar, O. Parkash, Auto-combustion synthesis and properties of Ce0.85Gd0.15O1.925 for intermediate temperature solid oxide fuel cells electrolyte. Solid State Ion. 192(1), 431–434 (2011). https://doi.org/10.1016/j.ssi.2010.04.015

    Article  Google Scholar 

  47. B. Roling, A. Happe, K. Funke, M.D. Ingram, Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78(11), 2160–2163 (1997)

    Article  ADS  Google Scholar 

  48. A.K. Yadav, P.A. Jha, S. Murugavel, P. Singh, Synthesis, characterization and AC conductivity of alkali metal substituted telluride glasses. Solid State Ion. 296, 54–62 (2016). https://doi.org/10.1016/j.ssi.2016.08.013

    Article  Google Scholar 

  49. M. Khutia, G.M. Joshi, S. Bhattacharya, Study of electrical relaxation mechanism of TiO2 doped Bi-polymer systems. Adv. Mater. Lett. 7(3), 201–208 (2016)

    Article  Google Scholar 

  50. S. Murugavel, B. Roling, Ion transport mechanism in borate glasses: influence of network structure on non-Arrhenius conductivity. Phys. Rev. B Condens. Matter Mater. Phys. 76(18), 2–5 (2007)

    Article  Google Scholar 

  51. D.N. Singh, T.P. Sinha, D.K. Mahato, Electric modulus, scaling and ac conductivity of La2CuMnO6 double perovskite. J. Alloys Compd. 729, 1226–1233 (2017). https://doi.org/10.1016/j.jallcom.2017.09.241

    Article  Google Scholar 

  52. P.A. Jha, A.K. Yadav, P.K. Jha, P. Singh, AC conductivity and ion dynamics of alkaline earth metal substituted telluride glasses. J. Non Cryst. Solids 452, 203–209 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.08.043

    Article  ADS  Google Scholar 

  53. O.N. Verma, N.K. Singh, P. Singh, Study of ion dynamics in lanthanum aluminate probed by conductivity spectroscopy. RSC Adv. 5(28), 21614–21619 (2015). https://doi.org/10.1039/C5RA01146A

    Article  Google Scholar 

  54. P. Singh, B.P. Singh, Dispersion in AC conductivity of fragile glass melts near glass transition temperature. Solid State Ion. 227, 39–45 (2012). https://doi.org/10.1016/j.ssi.2012.08.021

    Article  Google Scholar 

  55. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  ADS  Google Scholar 

  56. M.K. Nowtony, T. Bak, J. Nowtony, Electrical properties and defect chemositry of TiO2 single crystal. I. Electrical conductivity. J. Phys. Chem. (2006). https://doi.org/10.1021/jp0606210

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. S. K. Gupta (Department of Physics, Banasthali Vidyapeeth, Banasthali, Rajasthan) for providing Raman measurement facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, V., Kumar, M., Dubey, P.K. et al. Influence of synthesis route on structural, optical, and electrical properties of TiO2. Appl. Phys. A 125, 657 (2019). https://doi.org/10.1007/s00339-019-2948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2948-3

Navigation