Skip to main content
Log in

Frequency and temperature dependent dielectric properties in the lead free Ba0.75Ce0.033Sr0.2Ti0.96Sn0.04O3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ba0.75Ce0.033Sr0.2Ti0.96Sn0.04O3 ceramic was prepared by solid-state route. X-ray diffraction (XRD) analysis of the compound shows a tetragonal phase with the space group of P4mm at room temperature. The imaginary part of the impedance (Z″) as a function of frequency reveals the presence of relaxation phenomena. Nyquist plots of impedance exhibit a semicircle arcs at different temperatures and an electrical equivalent circuit of (R1//CPE1) − (R2//CPE2) has been purposed to describe the impedance results. The imaginary part of the complex permittivity (\(\varepsilon^{\prime\prime}\)) and the dielectric factor (tan δ) show a drastic decrease with the frequency. The decrease can be interpreted by the polarization type of Maxwell–Wagner. On the basis of the universal power law of Jonscher, the conductivity can be written as:\(\sigma = \sigma_{{{\text{DC}}}} + A\omega^{n}\). At low frequencies, the conduction mechanism obeys to SPH model and to the CBH model at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Kantha, K. Pengpat, P. Jarupoom, U. Intatha, G. Rujijanagul, T. Tunkasiri, Phase formation and electrical properties of BNLT–BZT lead-free piezoelectric ceramic system. Curr. Appl. Phys. 9, 460–466 (2009)

    Article  ADS  Google Scholar 

  2. D. Lin, K.W. Kwok, H.L.W. Chan, Effects of MnO2 on the microstructure and electrical properties of 0.94(K0.5Na0.5)NbO3–0.06Ba(Zr0.05Ti0.95)O3 lead-free ceramics. Mater. Chem. Phys. 109, 455–458 (2008)

  3. H. Maiwa, Dielectric and electromechanical properties of Ba (ZrxTi1−x)O3 (x = 0.1 and 0.2) ceramics prepared by spark plasma sintering. Jpn. J. Appl. Phys. 46, 7013 (2007)

  4. Z. Chen, J. Hu, Piezoelectric and dielectric properties of (Bi0.5Na0.5)0.94Ba0.06TiO3–Ba (Zr0.04Ti0.96)O3 lead-free piezoelectric ceramics. Ceram. Int. 35, 111–115 (2009)

  5. R.H. Upadhyay, A.P. Argekar, R.R. Deshmukh, Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bull. Mater. Sci. 37(3), 481–489 (2014)

    Article  Google Scholar 

  6. Y. Wei, Y. Song, X. Deng, B. Han, X. Zhang, Y. Shen, Y. Lin, Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Technol. 30(8), 743–747 (2014)

    Article  Google Scholar 

  7. P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545–549 (2013)

    Article  ADS  Google Scholar 

  8. S. Devi, A.K. Jha, Structural, dielectric and ferroelectric properties of tungsten substituted barium titanate ceramics. Asian J. Chem. 21(10), 117–124 (2009)

    Google Scholar 

  9. H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  ADS  Google Scholar 

  10. A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, Field-induced strain and polarization response in lead-free Bi1/2(Na0.80K0.20)1/2TiO3–SrZrO3 ceramics. Mater. Chem. Phys. 143, 1282–1288 (2014)

  11. J.-H. Jeon, Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1− xSrxTiO3. J. Eur. Ceram. Soc. 24, 1045–1048 (2004)

    Article  Google Scholar 

  12. R. Farhi, M. El Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric ceramics. Eur. Phys. J. B 9, 599–604 (1999)

    Article  ADS  Google Scholar 

  13. Q. Sun, Q. Gu, K. Zhu, R. Jin, J. Liu, J. Wang, J. Qiu, Crystalline structure, defect chemistry and room temperature colossal permittivity of Nd-doped barium titanate. Sci. Rep. 7, 42274 (2017)

    Article  ADS  Google Scholar 

  14. K. Maeda, Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6, 2167–2173 (2014)

    Article  Google Scholar 

  15. M.K. Mahata, K. Kumar, V.K. Rai, Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 124, 285–291 (2014)

  16. H. Abdelkefi, H. Khemakhem, G. Velu, J.C. Carru, R. Vonder Muhll, Dielectric properties and ferroelectric phase transitions in BaxSr1−xTiO3 solid solution. J. Alloys. Compd. 399, 1–6 (2005)

  17. L. Zhou, P.M. Vilarinho, J.L. Baptista, Dependence of the structural and dielectric properties of Ba1-xSrxTiO3 ceramic solid solutions on raw material processing. J. Eur. Ceram. Soc. 19, 2015 (1999)

    Article  Google Scholar 

  18. V.V. Lemanov, E.P. Smimova, P.P. Syrnikov, E.A. Tarakanov, Phase transitions and glasslike behavior in Sr1−xBaxTiO3. Phys. Rev. B 54, 3151–3157 (1996)

    Article  ADS  Google Scholar 

  19. S. Yasmin, S. Choudhury, M.A. Hakim, A.H. Bhuiyan, M.J. Rahman, J. Ceram. Process. Res. 12, 387–391 (2011)

  20. J.H. Hwang, Y.H. Han, J. Am. Ceram. Soc. 84, 1750–1754 (2001)

    Article  Google Scholar 

  21. M.J. Rahman, S. Choudhury, A.H. Bhuiyan, S.N. Rahman, A.H. Khan, J. Bangladesh Acad. Sci. 31, 137–141 (2007)

    Google Scholar 

  22. L.X. Fu, L.Y. Zhang, X. Yao, Structural and dielectric properties of Ba0.80Sr0.20Ti(1x)SnxO3 ceramics. J. Electroceram. 21, 561–564 (2008)

  23. X. Wang, B. Li, J. Solid State Commun. 149, 537 (2009)

    Article  ADS  Google Scholar 

  24. R. Brahem, H. Rahmouni, N. Farhat, J. Dhahri, K. Khirouni, L.C. Costa, Electrical properties of Sn-doped Ba0.75Sr0.25Ti0.95O3 perovskite. Ceram. Int. 40, 9355–9360 (2014)

    Article  Google Scholar 

  25. F.I.H. Rhouma, A. Dhahri, J. Dhahri, M.A. Valente, Appl. Phys. A 108, 593–600 (2012)

    Article  Google Scholar 

  26. S. Chihaoui, L. Seveyrat, V. Perrin, I. Kallel, L. Lebrun, H. Khemakhem, Ceram. Int. 43(1), 427–432 (2017)

  27. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst. 22, 151–152 (1967)

    Article  Google Scholar 

  28. A. Taylor, X-ray Metallography (Wiley, New York, 1961)

    Google Scholar 

  29. P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten–bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Solid State Commun. 146, 472–477 (2008)

    Article  ADS  Google Scholar 

  30. S. Upadhyay, High temperature impedance spectroscopy of barium stannate, BaSnO3. Bull. Mater. Sci. 36, 1019–1036 (2013)

    Article  Google Scholar 

  31. G. Anand, P. Kuchhal, P. Srah, The structure and complex impedance spectroscopy of Sr1−x CaxBi4Ti4O15 (x = 0, 0.2, 0.4, 0.6, 0.8) ceramics. Procedia Mater. Sci. 10, 533–541 (2015)

  32. S. Dash, R.N.P. Choudhary, A. Kumar, Impedance spectroscopy and conduction mechanism of multiferroic (Bi0.6K0.4)(Fe0.6Nb0.4)O3. J. Phys. Chem. Solids 75, 1376–1382 (2014)

  33. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)

  34. A.K. Jonsher, The universal dynamic response. Nature 267(5613), 673–679 (1977)

    Article  ADS  Google Scholar 

  35. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies of sodium pyrotungstate—Na2W2O7. Phys. Status Solidi (a) 201, 588–595 (2004)

    Article  ADS  Google Scholar 

  36. B. Tiwari, R.N.P. Choudhary, Complex impedance spectroscopic analysis of Mn-modified Pb(Zr0.65Ti0.35)O3 electroceramics. J. Phys. Chem. Solids 69(11), 2852–2857 (2008)

  37. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J. Phys. Chem. Solids. 110, 87–99 (2017)

    Article  ADS  Google Scholar 

  38. A. Chen, Y. Zhi, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 228–236 (2000)

    Article  ADS  Google Scholar 

  39. U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Impedance study of giant dielectric permittivity in BaFe0.5Nb0.5O3 perovskite ceramic. Curr. Appl. Phys. 10, 21–25 (2010)

  40. H. Rahmouni, A. Benali, B. Cherif, E. Dhahri, M. Boukhobza, K. Khirouni, M. Sajieddine, Structural and electrical properties of Zn1-xNixFe2O4 ferrite. Phys. B Condens. Matter 466–467, 31–37 (2015)

    Article  ADS  Google Scholar 

  41. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103 (2018)

  42. M. Nadeem, M.J. Akhtar, A.Y. Khan, Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1−yFeyO3 (where y = 0.05–0.10) ceramic oxides, Solid State Commun. 134, 431–436 (2005)

  43. E.J. Abram, D.C. Sinclair, A.R. West, A strategy for analysis and modelling of impedance spectroscopy data of electroceramics: doped lanthanum gallate. J. Electroceramics 10, 165–177 (2003)

    Article  Google Scholar 

  44. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J. Alloy. Compd. 536, 173–178 (2012)

  45. S. Sahoo, U. Dash, S.K.S. Parashar, S.M. Ali, Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling. J. Adv. Ceram. 2, 291–300 (2013)

    Article  Google Scholar 

  46. J. Hazarika, A. Kumar, Electric modulus based relaxation dynamics and ac conductivity scaling of polypyrrole nanotubes. Synth. Met. 198, 239–247 (2014)

    Article  Google Scholar 

  47. C. Behera, R.N.P. Choudhary, P.R. Das, Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites. J. Mater. Sci. Mater. Electron. 25, 2086 (2014)

    Article  Google Scholar 

  48. Q.Q. Ke, X.J. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys. Rev. B 82, 24102 (2010)s

  49. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 24102 (2009)

  50. N.F. Mott, E.A. Davis, Electronic Process in Non Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  51. A. von Hippel, Dielectrics and Waves (Wiley, New York, 1954)

    Google Scholar 

  52. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121.L (1951)

    Article  ADS  Google Scholar 

  53. A.K. Chauhan, K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41, 8341–8351 (2015)

    Article  Google Scholar 

  54. A.K. Konsher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  55. S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42, 14041–14048 (2016)

    Article  Google Scholar 

  56. T.M. Meaz, S. Attia, A.M.A. El Ata, Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J. Magn. Magn. Mater. 257, 296–305 (2003)

    Article  ADS  Google Scholar 

  57. A. Ghosh, Ac conduction in iron bismuthate glassy semiconductors. Phys. Rev. B 42, 1388 (1990)

    Article  ADS  Google Scholar 

  58. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 19, 41 (1969)

    Article  ADS  Google Scholar 

  59. S.R. Elliot, A theory of ac conduction in chalcogenide glasses. Philos. Magn. 36, 1291–1304 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.Dhahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeydi, I., Zaidi, A., J.Dhahri et al. Frequency and temperature dependent dielectric properties in the lead free Ba0.75Ce0.033Sr0.2Ti0.96Sn0.04O3 ceramics. Appl. Phys. A 125, 656 (2019). https://doi.org/10.1007/s00339-019-2944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2944-7

Navigation