Skip to main content
Log in

Investigation of structural, microstructural, dielectric, and electrical characteristics of a new lead-free compound: Ca3Bi2MoO9

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A newly designed lead-free complex ceramic with the chemical formula Ca3Bi2MoO9 has been synthesized using a conventional solid-state reaction technique. The structure, microstructure, resistive, dielectric, and conductivity characteristics have been experimentally tested. Analysis of the X-ray diffraction spectrum suggests the sample has monoclinic crystal symmetry (a = 10.639 Å, b = 9.674 Å, c = 6.396 Å, β = 93.794°). The lattice strain and average crystallite sizes are − 0.00114 and 24.17 nm. The compactness and quality of the material have been analyzed by FESEM and EDX spectrum. The fabricated and newly designed electronic material have effective temperature and frequency-dependent electrical characteristics. The study of the conductivity of the material confirms the Universal power law. Analysis of Impedance spectroscopy data (temperature and frequency dependent) confirms that the presence of grains and grain boundaries are responsible for the resistivity properties of the material. A depressed semicircular arc (at 450 °C) with an angle of 2.82° elaborate the non-Debye relaxation phenomena. High dielectric permittivity, minimal tangent loss, and negative temperature coefficient response are observed in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The author can provide the data for the proper reasonable request.

References

  1. Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Adv. Mater. 24(14), 1856–1861 (2012). https://doi.org/10.1002/adma.201200170

    Article  CAS  Google Scholar 

  2. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng, D. Zou, Adv. Mater. 24(42), 5713–5718 (2012). https://doi.org/10.1002/adma.201202930

    Article  CAS  Google Scholar 

  3. J.M. Rondinelli, C.J. Fennie, Adv. Mater. 24(15), 1961–1968 (2012). https://doi.org/10.1002/adma.201104674

    Article  CAS  Google Scholar 

  4. D. Peng, X. Wang, C. Xu, X. Yao, J. Lin, Sun, TJournal of the American Ceramic Society. 96(1), 184–190 (2013). https://doi.org/10.1111/jace.12002

    Article  CAS  Google Scholar 

  5. I. Coondoo, A.K. Jha, S.K. Agarwal, J. Eur. Ceram. Soc. 27(1), 253–260 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.167

    Article  CAS  Google Scholar 

  6. H. Irie, M. Miyayama, T. Kudo, J. Appl. Phys. 90(8), 4089–4094 (2001). https://doi.org/10.1063/1.1389476

    Article  CAS  Google Scholar 

  7. C. Long, W. Zhou, W. Ren, Y. Zhang, K. Zheng, L. Liu, Scripta Mater. 204, 114102 (2021). https://doi.org/10.1016/j.scriptamat.2021.114102

    Article  CAS  Google Scholar 

  8. M.G. Stachiotti, C.O. Rodriguez, C. Ambrosch-Draxl, N.E. Christensen, Phys. Rev. B 61(21), 14434 (2000). https://doi.org/10.1103/PhysRevB.61.14434

    Article  CAS  Google Scholar 

  9. Y. Shimakawa, H. Imai, H. Kimura, S. Kimura, Y. Kubo, E. Nishibori, …, Z. Hiroi, Phys. Rev. B 66(14), 144110 (2002). https://doi.org/10.1103/PhysRevB.66.144110

    Article  CAS  Google Scholar 

  10. J.M. Perez-Mato, M. Aroyo, A. García, P. Blaha, K. Schwarz, J. Schweifer, K. Parlinski, Phys. Rev. B 70(21), 214111 (2004). https://doi.org/10.1103/PhysRevB.70.214111

    Article  CAS  Google Scholar 

  11. I. Coondoo, A.K. Jha, S.K. Agarwal, Ceram. Int. 33(1), 41–47 (2007). https://doi.org/10.1016/j.ceramint.2005.07.013

    Article  CAS  Google Scholar 

  12. M. Zhang, C. Shao, J. Mu, X. Huang, Z. Zhang, Z. Guo, …, Y. Liu, J. Mater. Chem. 22(2), 577–584 (2012). https://doi.org/10.1039/C1JM13470A

    Article  CAS  Google Scholar 

  13. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, J. Magn. Magn. Mater. 486, 165254 (2019). https://doi.org/10.1016/j.jmmm.2019.165254

    Article  CAS  Google Scholar 

  14. T. Hong, Y. Hu, S. Bao, C. Luo, L. Ai, P. Jiang, …, Z. Duan, J. Electron. Mater. 48, 972–976 (2019). https://doi.org/10.1007/s11664-018-6807-3

    Article  CAS  Google Scholar 

  15. S.S. Hota, D. Panda, R.N.P. Choudhary, Inorg. Chem. Commun. 153, 110785 (2023). https://doi.org/10.1016/j.inoche.2023.110785

    Article  CAS  Google Scholar 

  16. D. Panda, S.S. Hota, R.N.P. Choudhary, Mater. Sci. Engineering: B 296, 116616 (2023). https://doi.org/10.1016/j.mseb.2023.116616

    Article  CAS  Google Scholar 

  17. S.S. Hota, D. Panda, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 34(10), 900 (2023). https://doi.org/10.1007/s10854-023-10240-0

    Article  CAS  Google Scholar 

  18. A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, Cryst. Res. Technol. 50(9–10), 737–742 (2015). https://doi.org/10.1002/crat.201500024

    Article  CAS  Google Scholar 

  19. L. Sahoo, B.N. Parida, R.K. Parida, R. Padhee, A.K. Mahapatra, Inorg. Chem. Commun. 146, 110102 (2022). https://doi.org/10.1016/j.inoche.2022.110102

    Article  CAS  Google Scholar 

  20. M. Mehrabi, M. Zahedifar, S. Hasanloo, K. Kohzadi, H. Nikmanesh, Y. Li, Eur. Phys. J. Plus. 138(7), 584 (2023). https://doi.org/10.1140/epjp/s13360-023-04236-2

    Article  CAS  Google Scholar 

  21. K. Parida, S.K. Dehury, R.N.P. Choudhary, Chin. J. Phys. 59, 231–241 (2019). https://doi.org/10.1016/j.cjph.2019.03.009

    Article  CAS  Google Scholar 

  22. S.S. Hota, D. Panda, R.N.P. Choudhary, Solid State Ionics. 399, 116313 (2023). https://doi.org/10.1016/j.ssi.2023.116313

    Article  CAS  Google Scholar 

  23. A.C. Rovani, F. Kouketsu, C.H. da Silva, G. Pintaude, Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/6767245

    Article  Google Scholar 

  24. V. Purohit, R.N.P. Choudhary, Mater. Sci. Engineering: B 243, 30–37 (2019). https://doi.org/10.1016/j.mseb.2019.03.017

    Article  CAS  Google Scholar 

  25. P. Kumar, J.K. Junej, C. Prakash, K.K. Raina, S. Singh, Phys. B Condens. Matter. 426, 112–117 (2013). https://doi.org/10.1016/j.physb.2013.05.038

    Article  CAS  Google Scholar 

  26. S. Halder, S. Bhuyan, S.N. Das, S. Sahoo, R.N.P. Choudhary, P. Das, K. Parida, Appl. Phys. A 123, 1–8 (2017). https://doi.org/10.1007/s00339-017-1406-3

    Article  CAS  Google Scholar 

  27. S.N. Das, S.K. Pradhan, D.P. Kar, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 29(11), 9375–9379 (2018). https://doi.org/10.1007/s10854-018-8969-4

    Article  CAS  Google Scholar 

  28. T. Mahapatra, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 29(21), 18742–18750 (2018). https://doi.org/10.1007/s10854-018-9998-8

    Article  CAS  Google Scholar 

  29. N. Shukla, V. Kumar, D.K. Dwivedi, J. Non- Oxide Glasses. 8, 47–57 (2016)

    Google Scholar 

  30. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256–263 (2004). https://doi.org/10.1016/j.matchemphys.2004.03.005

    Article  CAS  Google Scholar 

  31. M. Kumar, K.L. Yadav, J. Phys.: Condens. Matter. 19(24), 242202 (2007). https://doi.org/10.1088/0953-8984/19/24/242202

    Article  CAS  Google Scholar 

  32. G. Singh, H.P. Bhasker, R.P. Yadav, S.K. Mandal, A. Kumar, B. Khan, ... M.K. Singh, Phys. Scr. 94(12), 12 (2019). https://doi.org/10.1088/1402-4896/ab354a

    Article  CAS  Google Scholar 

  33. S. Zhang, F. Yu, J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2011.04792.x

    Article  Google Scholar 

  34. A. Manohar, C.J.M.C. Krishnamoorthi, Mater. Chem. Phys. 192, 235–243 (2017). https://doi.org/10.1016/j.matchemphys.2017.01.039

    Article  CAS  Google Scholar 

  35. M. Yildirim, A. Kocyigit, Syst. Surf. Rev. Lett. 27, 1950217–1950212 (2020). https://doi.org/10.1142/S0218625X19502172

    Article  CAS  Google Scholar 

  36. E. Barsoukov, J.R. Macdonald, Impedance spectroscopy: theory, experiment, and applications (Wiley, Hoboken, 2018)

    Book  Google Scholar 

  37. S. Sen, R.N.P. Choudhary, A. Tarafdar, P. Pramanik, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2206850

    Article  Google Scholar 

  38. A.K. Pradhan, K. Zhang, D. Hunter, J.B. Dadson, G.B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, Appl. Phys. 97, 3–6 (2005). https://doi.org/10.1063/1.1881775

    Article  CAS  Google Scholar 

  39. A. Manohar, V. Vijayakanth, S.P. Vattikuti, K.H. Kim, Mater. Chem. Phys. 301, 127601 (2023). https://doi.org/10.1016/j.matchemphys.2023.127601

    Article  CAS  Google Scholar 

  40. A. Manohar, V. Vijayakanth, S.P. Vattikuti, G.R. Reddy, K.H. Kim, J. Energy Storage. 68, 107674 (2023). https://doi.org/10.1016/j.est.2023.107674

    Article  Google Scholar 

  41. A. Manohar, V. Vijayakanth, S.P. Vattikuti, K.H. Kim, Mater. Sci. Semiconduct. Process. 157, 107338 (2023). https://doi.org/10.1016/j.mssp.2023.107338

    Article  CAS  Google Scholar 

  42. A. Manohar, V. Vijayakanth, S.P. Vattikuti, K.H. Kim, Ceram. Int. 49(12), 19717–19727 (2023). https://doi.org/10.1016/j.ceramint.2023.03.089

    Article  CAS  Google Scholar 

  43. A. Manohar, V. Vijayakanth, S.P. Vattikuti, K.H. Kim, Ceram. Int. 49(3), 4365–4371 (2023). https://doi.org/10.1016/j.ceramint.2022.09.322

    Article  CAS  Google Scholar 

  44. A. Manohar, V. Vijayakanth, S.P. Vattikuti, K.H. Kim, Ceram. Int. 48(20), 30695–30703 (2022). https://doi.org/10.1016/j.ceramint.2022.07.018

    Article  CAS  Google Scholar 

  45. A. Manohar, C. Krishnamoorthi, J. Alloys Compd. 722, 818–827 (2017). https://doi.org/10.1016/j.jallcom.2017.06.145

    Article  CAS  Google Scholar 

  46. A. Manohar, C. Krishnamoorthi, K.C.B. Naidu, C. Pavithra, Appl. Phys. A 125, 1–10 (2019). https://doi.org/10.1007/s00339-019-2760-0

    Article  CAS  Google Scholar 

  47. P.K. Prabhasini Gupta, R.N.P. Mahapatra, Choudhary, Phys. B Condens. Matter. 572, 203–213 (2019). https://doi.org/10.1016/j.physb.2019.08.002

    Article  CAS  Google Scholar 

  48. R. Mukherjee, B. Ghosh, S. Saha, C. Bharti, T.P. Sinha, J. Rare Earths. 32, 334 (2014). https://doi.org/10.1016/S1002-0721(14)60076-4

    Article  CAS  Google Scholar 

  49. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Int. 41, 7713–7722 (2015). https://doi.org/10.1016/j.ceramint.2015.02.102

    Article  CAS  Google Scholar 

  50. M. Anjidania, H.M. Moghaddama, R. Ojani, Mater. Sci. Semicond. Process. 71, 20–28 (2017). https://doi.org/10.1016/j.mssp.2017.05.036

    Article  CAS  Google Scholar 

  51. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1–8 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0504

    Article  CAS  Google Scholar 

  52. W. Yang, S. Yu, R. Sun, S. Ke, H. Huang, R. Du, J. Phys. D Appl. Phys. 44, 475305–475304 (2011). https://doi.org/10.1088/0022-3727/44/47/475305

    Article  CAS  Google Scholar 

  53. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 24102–24106 (2009). https://doi.org/10.1063/1.3158121

    Article  CAS  Google Scholar 

  54. A.Ã. Keskin, Sens. Actuators Phys. 118(2), 244–247 (2005). https://doi.org/10.1016/j.sna.2004.06.034

    Article  CAS  Google Scholar 

  55. A.I. Khan, P. Khakbaz, K.A. Brenner, K.K. Smithe, M.J. Mleczko, D. Esseni, E. Pop, Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0003312

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Revenshaw University, Cuttack, India, for the FESEM research and our host university for the XRD characterization.

Funding

There is no financial support for this research work.

Author information

Authors and Affiliations

Authors

Contributions

DP: Data collection, writing—original draft. SSH: Software, validation. RNPC: Supervision, methodology, review, editing, visualization.

Corresponding author

Correspondence to Sudhansu Sekhar Hota.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work. In addition to the above, we have no conflicts of interest with anybody except Paweł E. Tomaszewski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, D., Hota, S.S. & Choudhary, R.N.P. Investigation of structural, microstructural, dielectric, and electrical characteristics of a new lead-free compound: Ca3Bi2MoO9. J Mater Sci: Mater Electron 34, 1908 (2023). https://doi.org/10.1007/s10854-023-11326-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11326-5

Navigation